Limited operating bandwidth originated from strong absorption of glass materials in the infrared (IR) spectral region has hindered the potential applications of microstructured optical waveguide (MOW)-based sensors. Here, we demonstrate multimode waveguide regime up to 6.5 µm for the hollow-core (HC) MOWs drawn from borosilicate soft glass. Effective light guidance in central HC (diameter ∼240 µm) was observed from 0.4 to 6.5 µm despite high waveguide losses (0.4 and 1 dB/cm in near- and mid-IR, respectively). Additional optimization of the waveguide structure can potentially extend its operating range and decrease transmission losses, offering an attractive alternative to tellurite and chalcogenide-based fibers. Featuring the transparency in mid-IR, HC MOWs are promising candidates for the creation of MOW-based sensors for chemical and biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.399410DOI Listing

Publication Analysis

Top Keywords

light guidance
8
borosilicate soft
8
soft glass
8
microstructured optical
8
mow-based sensors
8
guidance 65 µm
4
65 µm borosilicate
4
glass hollow-core
4
hollow-core microstructured
4
optical waveguides
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!