We demonstrate an improvement in the photoresponse characteristics of ultraviolet (UV) photodetectors (PDs) using the NO plasma-treated ZnO nanorod (NR) gated AlGaN/GaN high electron mobility transistor (HEMT) structure. The PDs fabricated with ZnO NRs plasma-treated for 6 min show superior performance in terms of responsivity (∼1.54×10 A/W), specific detectivity (∼ 4.7×10 cm·Hz/W), and on/off current ratio (∼40). These improved performance parameters are the best among those from HEMT-based PDs reported to date. Photoluminescence analysis shows a significant enhancement in near band edge emission due to the effective suppression of native defects near the surface of ZnO NRs after plasma treatment. As our X-ray photoelectron spectroscopy reveals a very high O/Zn ratio of ∼0.96 from the NR samples plasma-treated for 6 min, the NO plasma radicals also show a clear impact on ZnO stoichiometry. From our X-ray diffraction analysis, the plasma-treated ZnO NRs show much greater improvement in (002) peak intensity and degree of (002) orientation (∼0.996) than those of as-grown NRs. This significant enhancement in (002) degree of orientation and stoichiometry in ZnO nano-crystals contribute to the enhancement in photoresponse characteristics of the PDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.399888 | DOI Listing |
ACS Omega
December 2024
School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, U.K.
Modulating memristors optically paves the way for new optoelectronic devices with applications in computer vision, neuromorphic computing, and artificial intelligence. Here, we report on memristors based on a hybrid material of vertically aligned zinc oxide nanorods (ZnO NRs) and poly(methyl methacrylate) (PMMA). The memristors require no forming step and exhibit the typical electronic switching properties of a bipolar memristor.
View Article and Find Full Text PDFRSC Adv
November 2024
Department of Science and Technology, Physics Electronics and Mathematics, Linköping University SE-60174 Norrköping Sweden +46 11 36 32 19.
Water Res
January 2025
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada. Electronic address:
One of the main challenges in applying photocatalysts for water treatment is the complex separation and recycling process. In this study, we developed highly stable, porous zinc oxide nanorods (ZnO NRs) immobilized on glass vials using a solvent exchange process (SEP) and hydrothermal calcination. Key parameters, including oleic acid concentration and hydrothermal growth time, were optimized to maximize the active surface area, significantly enhancing photodegradation performance.
View Article and Find Full Text PDFLangmuir
November 2024
School of Materials Science and Engineering, Changchun University, Changchun 130022, China.
Staggered gap p-n heterojunction ZnO nanorods/AgO nanoparticles, a paradigm of photocatalysts, were developed via engineering the hydrothermal and coprecipitation method. Under simulated sunlight, the photocatalytic characteristics of ZnO/AgO(Zn/A) heterojunctions with varying mole ratios (from 8:1 to 8:4, named Zn/A-1-Zn/A-4) were systematically evaluated through the degradation of methylene blue (MB). The influence of key experimental variables, including photocatalyst concentration, MB concentration, and solution pH, on the photocatalyst performance was further analyzed.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124007, India. Electronic address:
An electrochemical sensor has received much attention due to its importance for early infection identification, hinting at its critical relevance in diagnostic applications. For the detection of field-isolated strains of Pasteurella multocida, this paper reports the development and fabrication of a DNA-based electrochemical biosensor by integrating zinc oxide (ZnO) nanorods (NRs) into an electrochemical paper-based analytical device (ePAD). One significant improvement over the state-of-the-art features of the sensor is the using paper, an economically viable substrate that can be manufactured in large numbers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!