The improvement of the mechanical properties of Ni-based superalloys is achieved in most cases by modifying the chemical composition. Besides that, the processing can be modified to optimize the as-cast microstructure with regard to the mechanical properties. In this context, the present study highlights the solidification mechanism of several Ni-based superalloys by conducting experiments using a modified, laboratory-scale Bridgman-Stockbarger furnace. In that context, the single-crystal rods are partially melted, directionally solidified and quenched sequentially. Several characterization methods are applied to further analyze the influence of the alloying elements and the variation of the withdrawal rate on the as-cast microstructure. Four stages of solidification are distinguished whereby the morphology observed in the different stages mainly depends on the cooling rate and the local concentration of the carbide forming elements. The effect of carbide precipitation and the effect on the as-cast microstructure is investigated by employing energy dispersive X-ray spectrometry (EDX) and electron backscatter diffraction (EBSD) analysis techniques. A local polycrystalline structure is observed in the single-crystal system as consequence of the influence of the carbon content and the cooling rate. The present work aims to develop strategies to suppress the formation of the polycrystalline structure to maintain the single-crystal microstructure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579343 | PMC |
http://dx.doi.org/10.3390/ma13194265 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!