Development of a Prediction Model for Demolition Waste Generation Using a Random Forest Algorithm Based on Small DataSets.

Int J Environ Res Public Health

Department of Fire and Disaster Prevention Engineering, Changshin University, Gyeongsangnam-do 51352, Korea.

Published: September 2020

Recently, artificial intelligence (AI) technologies have been employed to predict construction and demolition (C&D) waste generation. However, most studies have used machine learning models with continuous data input variables, applying algorithms, such as artificial neural networks, adaptive neuro-fuzzy inference systems, support vector machines, linear regression analysis, decision trees, and genetic algorithms. Therefore, machine learning algorithms may not perform as well when applied to categorical data. This article uses machine learning algorithms to predict C&D waste generation from a dataset, as a way to improve the accuracy of waste management in C&D facilities. These datasets include categorical (e.g., region, building structure, building use, wall material, and roofing material), and continuous data (particularly, gloss floor area), and a random forest (RF) algorithm was used. Results indicate that RF is an adequate machine learning algorithm for a small dataset consisting of categorical data, and even with a small dataset, an adequate prediction model can be developed. Despite the small dataset, the predictive performance according to the demolition waste (DW) type was R (Pearson's correlation coefficient) = 0.691-0.871, R (coefficient of determination) = 0.554-0.800, showing stable prediction performance. High prediction performance was observed using three (for mortar), five (for other DW types), or six (for concrete) input variables. This study is significant because the proposed RF model can predict DW generation using a small amount of data. Additionally, it demonstrates the possibility of applying AI to multi-purpose DW management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579598PMC
http://dx.doi.org/10.3390/ijerph17196997DOI Listing

Publication Analysis

Top Keywords

machine learning
16
waste generation
12
small dataset
12
prediction model
8
demolition waste
8
random forest
8
forest algorithm
8
c&d waste
8
continuous data
8
input variables
8

Similar Publications

The levels of capsaicin (CAP) and hydroxy-α-sanshool (α-SOH) are crucial for evaluating the spiciness and numbing sensation in spicy hotpot seasoning. Although liquid chromatography can accurately measure these compounds, the method is invasive. This study aimed to utilize hyperspectral imaging (HSI) combined with machine learning for the nondestructive detection of CAP and α-SOH in hotpot seasoning.

View Article and Find Full Text PDF

By analyzing facial features to perform expression recognition and health monitoring, facial perception plays a pivotal role in noninvasive, real-time disease diagnosis and prevention. Current perception routes are limited by structural complexity and the necessity of a power supply, making timely and accurate monitoring difficult. Herein, a self-powered poly(vinyl alcohol)-gellan gum-glycerol thermogalvanic gel patch enabling facial perception is developed for monitoring emotions and atypical pathological states.

View Article and Find Full Text PDF

We present an application of our new theoretical formulation of quantum dynamics, moment propagation theory (MPT) (Boyer et al., J. Chem.

View Article and Find Full Text PDF

In unsupervised transfer learning for medical image segmentation, where existing algorithms face the challenge of error propagation due to inaccessible source domain data. In response to this scenario, source-free domain transfer algorithm with reduced style sensitivity (SFDT-RSS) is designed. SFDT-RSS initially pre-trains the source domain model by using the generalization strategy and subsequently adapts the pre-trained model to target domain without accessing source data.

View Article and Find Full Text PDF

The increasing utilization of deep learning models in drug repositioning has proven to be highly efficient and effective. In this study, we employed an integrated deep-learning model followed by traditional drug screening approach to screen a library of FDA-approved drugs, aiming to identify novel inhibitors targeting the TNF-α converting enzyme (TACE). TACE, also known as ADAM17, plays a crucial role in the inflammatory response by converting pro-TNF-α to its active soluble form and cleaving other inflammatory mediators, making it a promising target for therapeutic intervention in diseases such as rheumatoid arthritis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!