Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Secret image sharing (SIS) is an important research direction in information hiding and data security transmission. Since the generated shadow images (shares) are always noise-like, it is difficult to distinguish the fake share from the unauthorized participant before recovery. Even more serious is that an attacker with a fake share can easily collect shares of other honest participants. As a result, it is significant to verify the shares, before being taken out for recovery. Based on two mainstream methods of SIS, such as polynomial-based SIS and visual secret sharing(VSS), this paper proposed a novel compressed SIS with the ability of shadow image verification. Considering that the randomness of the sharing phase of polynomial-based SIS can be utilized, one out of shares of (2, 2)-threshold random-grid VSS is embedded into all shares of polynomial-based SIS by a XOR operation as the verification information, while the other binary share is private for verification. Before recovery, each participant must extract the binary share from the grayscale share to perform XOR operation with the private share, and the original binary image can be recovered only with the true share. The proposed scheme also has the characteristics of shadow image verification, pixel compression, loss tolerance and lossless recovery. Through experiments and comparative analysis of related research results, the effectiveness and advantages of the method are verified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2020237 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!