Genetic diversity of Merozoite surface protein 1-42 (MSP1-42) fragment of Plasmodium vivax from Indonesian isolates: Rationale implementation of candidate MSP1 vaccine.

Infect Genet Evol

National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, People's Republic of China; The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai 200011, People's Republic of China. Electronic address:

Published: November 2020

Morbidity and mortality related to malaria in Indonesia are attributed to both Plasmodium falciparum and P. vivax parasites. In addition to vaccines for P. falciparum, vaccines against P. vivax are urgently needed for the prevention of the disease. An extensively studied antigen is the carboxyl-terminus of the 42 kDa region of P. vivax merozoite surface protein-1 (PvMSP1-42). The design of a vaccine based on this antigen requires an understanding of the extent of polymorphism. However, there is no information on the genetic diversity of the antigen in Indonesia. This study aimed to profile the diversity of PvMSP1-42 and its two subdomains (PvMSP1-33 and PvMSP1-19) among Indonesian P. vivax isolates. A total of 52 P. vivax-infected blood samples were collected from patients in two different endemic areas in Indonesia: Banjarmasin (Kalimantan) and Sumba Timur (Nusa Tenggara Timur). The polymorphic characteristics and natural selection of PvMSP1-42 were analyzed using the DnaSP, MEGA, and Structure software. Thirty distinct haplotypes of PvMSP1-42 were identified. They displayed amino acid changes compared to the reference PVP01 sequence. Most of the mutations were concentrated in the 33 kDa fragment. PvMSP1-42 of the Indonesian isolates appeared to be under positive selection. Recombination may also play a role in the resulting genetic diversity of PvMSP1. In conclusion, PvMSP1-42 of Indonesian isolates displayed allelic polymorphisms caused by mutation, recombination, and positive selection. These results will aid the understanding of the P. vivax population in Indonesia and to develop a PvMSP1 based vaccine against P. vivax.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2020.104573DOI Listing

Publication Analysis

Top Keywords

genetic diversity
12
indonesian isolates
12
merozoite surface
8
pvmsp1-42 indonesian
8
positive selection
8
vivax
7
pvmsp1-42
6
diversity merozoite
4
surface protein
4
protein 1-42
4

Similar Publications

Purpose: To quantify outer retina structural changes and define novel biomarkers of inherited retinal degeneration associated with biallelic mutations in RPE65 (RPE65-IRD) in patients before and after subretinal gene augmentation therapy with voretigene neparvovec (Luxturna).

Methods: Application of advanced deep learning for automated retinal layer segmentation, specifically tailored for RPE65-IRD. Quantification of five novel biomarkers for the ellipsoid zone (EZ): thickness, granularity, reflectivity, and intensity.

View Article and Find Full Text PDF

Revealing NOD1-Activating Gram-Positive Gut Microbiota via in Vivo Labeling with a meso-Diaminopimelic Acid Probe.

ACS Chem Biol

January 2025

Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.

As an important receptor in a host's immune and metabolic systems, NOD1 is usually activated by Gram-negative bacteria having -diaminopimelic acid (-DAP) in their peptidoglycan (PGN). But some atypical Gram-positive bacteria also contain -DAP in their PGN, giving them the potential to activate NOD1. The prevalence of -DAP-type Gram-positive bacteria in the gut, however, remains largely unknown.

View Article and Find Full Text PDF

In the Drosophila brain, neuronal diversity originates from approximately 100 neural stem cells, each dividing asymmetrically. Precise mapping of cell lineages at the single-cell resolution is crucial for understanding the mechanisms that direct neuronal specification. However, existing methods for high-resolution lineage tracing are notably time-consuming and labor-intensive.

View Article and Find Full Text PDF

In Vivo Clonal Analysis Using MADM with Spatiotemporal Specificity.

Methods Mol Biol

January 2025

IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing, People's Republic of China.

Mosaic analysis with double markers (MADM) is a powerful in vivo lineage tracing technique. It utilizes Cre recombinase-dependent interchromosomal recombination to restore the stable expression of two fluorescent proteins sparsely in individual dividing stem or progenitor cells and their progenies. Here, we describe the application of this technique for quantitative lineage analysis of radial glial progenitors in the developing mouse neocortex at the single-cell resolution.

View Article and Find Full Text PDF

Backtracking Cell Phylogenies in the Human Brain with Somatic Mosaic Variants.

Methods Mol Biol

January 2025

Sorbonne Université, Institut du Cerveau (Paris Brain Institute) ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France.

Somatic mosaic variants, and especially somatic single nucleotide variants (sSNVs), occur in progenitor cells in the developing human brain frequently enough to provide permanent, unique, and cumulative markers of cell divisions and clones. Here, we describe an experimental workflow to perform lineage studies in the human brain using somatic variants. The workflow consists in two major steps: (1) sSNV calling through whole-genome sequencing (WGS) of bulk (non-single-cell) DNA extracted from human fresh-frozen tissue biopsies, and (2) sSNV validation and cell phylogeny deciphering through single nuclei whole-genome amplification (WGA) followed by targeted sequencing of sSNV loci.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!