Antimicrobial effect of photodynamic therapy on intracanal biofilm: A systematic review of in vitro studies.

Photodiagnosis Photodyn Ther

Brazilian Lutheran University, ULBRA, Dental School, Av. Farroupila, 8001 Bairro São José, Canoas, RS, CEP 92425-020, Brazil.

Published: December 2020

AI Article Synopsis

  • Antimicrobial photodynamic therapy (A-PDT) is an adjunctive method to enhance root canal disinfection by targeting intracanal biofilm.
  • A systematic review included 27 studies that were analyzed for the effectiveness of PDT when combined with traditional endodontic procedures.
  • While PDT generally decreased bacterial viability in most studies, the lack of precise quantification and biases in the research limited the robustness of the conclusions.

Article Abstract

Background: Antimicrobial photodynamic therapy (A-PDT), is one of the adjunctive therapies developed to improve the effectiveness of root canal disinfection.. The aim of this study was to analyze the antimicrobial effect of PDT on intracanal biofilm.

Methods: Two reviewers conducted a literature search in PubMed, MEDLINE, Lilacs, SciELO, EMBASE and Google Scholar using the following search strategy: photochemotherapy "[Mesh] OR (photodynamic therapy) AND" dental plaque "[Mesh] OR (dental biofilm) AND (root canal). The following data were collected: publication year, author's name, study site, type of study, participant number, type of photosensitizer, type of laser, method of data collection, application time and results. Study quality was assessed using the Methodological Index for Non-Randomized Studies (MINORS).

Results: After selection based on title, abstract and full text, 27 studies were included in this systematic review. PDT reduced bacterial viability in most studies when combined with conventional endodontic techniques.

Conclusion: PDT reduced bacterial counts in most studies, especially when used as an adjunct to the conventional endodontic technique to treat refractory infection. However, PDT effects on in vitro bacterial biofilm were not accurately quantified because of the numerous biases in the studies reviewed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pdpdt.2020.102025DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
12
antimicrobial photodynamic
8
systematic review
8
root canal
8
pdt reduced
8
reduced bacterial
8
conventional endodontic
8
studies
6
therapy intracanal
4
intracanal biofilm
4

Similar Publications

Self-Sustained Biophotocatalytic Nano-Organelle Reactors with Programmable DNA Switches for Combating Tumor Metastasis.

Adv Mater

January 2025

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China.

Metastasis, the leading cause of mortality in cancer patients, presents challenges for conventional photodynamic therapy (PDT) due to its reliance on localized light and oxygen application to tumors. To overcome these limitations, a self-sustained organelle-mimicking nanoreactor is developed here with programmable DNA switches that enables bio-chem-photocatalytic cascade-driven starvation-photodynamic synergistic therapy against tumor metastasis. Emulating the compartmentalization and positional assembly strategies found in living cells, this nano-organelle reactor allows quantitative co-compartmentalization of multiple functional modules for the designed self-illuminating chemiexcited PDT system.

View Article and Find Full Text PDF

Hydrogen-Bonded Organic Framework Nanoscintillators for X-Ray-Induced Photodynamic Therapy in Hepatocellular Carcinoma.

Adv Mater

January 2025

Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, P. R. China.

X-ray induced photodynamic therapy (X-PDT) leverages penetrating X-ray to generate singlet oxygen (O) for treating deep-seated tumors. However, conventional X-PDT typically relies on heavy metal inorganic scintillators and organic photosensitizers to produce O, which presents challenges related to toxicity and energy conversion efficiency. In this study, highly biocompatible organic phosphorescent nanoscintillators based on hydrogen-bonded organic frameworks (HOF) are designed and engineered, termed BPT-HOF@PEG, to enhance X-PDT in hepatocellular carcinoma (HCC) treatment.

View Article and Find Full Text PDF

AIE-Active Antibacterial Photosensitizer Disrupting Bacterial Structure: Multicenter Validation against Drug-Resistant Pathogens.

Small Methods

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.

Antimicrobial resistance (AMR) has emerged as a global challenge in treating bacterial infections, creating an urgent need for broad-spectrum antimicrobial agents that can effectively combat multidrug-resistant (MDR) bacteria. Despite advancements in novel antimicrobial agents, many fail to comprehensively cover common resistant bacterial strains or undergo rigorous multi-center validation. Herein, a cationic AIE-active photosensitizers are developed, ITPM, derived from a triphenylamine-pyridine backbone to address the MDR challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!