Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Excessive, binge drinking is a major contributor to the great harm and cost of alcohol use disorder. We recently showed, using both limited and intermittent-access two-bottle-choice models, that inhibiting nucleus accumbens shell (Shell) orexin-1-receptors (Ox1Rs) reduces alcohol intake in higher-drinking male C57BL/6 mice (Lei et al., 2019). Other studies implicate Ox1Rs, tested systemically, for several higher-drinking models, including the single-bottle, Rhodes Drinking-in-the-Dark paradigm. Here, we report studies examining whether Shell Ox1Rs contribute to alcohol intake in male mice using a single-bottle Limited Daily Access (LDA) drinking model modified from drinking-in-the-dark paradigms (2-h access starting 3 h into the dark cycle, 5 days per week). In addition, some previous work has suggested possible differences in circuitry for one- versus two-choice behaviors, and thus other mice first drank under a single-bottle schedule, and then an additional water bottle was included 2 days a week starting in week 3. Surprisingly, at the same time we were determining Ox1R importance for two-bottle-choice models, parallel studies found that inhibiting Shell Ox1Rs had no impact on drinking using the single-bottle LDA model, or when a second bottle containing water was added later during drinking. Furthermore, we have related Shell Ox1R regulation of intake to basal consumption, but no such pattern was observed with single-bottle LDA drinking. Thus, unlike our previous work showing the importance of Shell Ox1Rs for male alcohol drinking under several two-bottle-choice models, Shell Ox1Rs were not required under a single-bottle paradigm, even if a second water-containing bottle was later added. These results raise the speculations that different mechanisms could promote intake under single- versus two-bottle access conditions, and that the conditions under which an animal learns to drink can impact circuitry driving future intake.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587485 | PMC |
http://dx.doi.org/10.1016/j.alcohol.2020.09.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!