AI Article Synopsis

  • Hematite (α-FeO) is a semiconductor with a band gap of 2.2 eV, making it effective for visible light absorption and photoelectrochemical water oxidation under basic conditions.
  • Modifying hematite thin films with Ti(IV) and oxygen-evolving catalysts boosts photocurrent density by six times compared to unmodified versions.
  • Research reveals that Ti(IV) ions integrate within ilmenite (FeTiO) in the mesoporous structure, enhancing the semiconductor-electrolyte interface and improving the efficiency of electron-hole separation, leading to better photoelectrochemical performance.

Article Abstract

Hematite (α-FeO) is an earth-abundant indirect n-type semiconductor displaying a band gap of about 2.2 eV, useful for collecting a large fraction of visible photons, with frontier energy levels suitably aligned for carrying out the photoelectrochemical water oxidation reaction under basic conditions. The modification of hematite mesoporous thin-film photoanodes with Ti(IV), as well as their functionalization with an oxygen-evolving catalyst, leads to a 6-fold increase in photocurrent density with respect to the unmodified electrode. In order to provide a detailed understanding of this behavior, we report a study of Ti-containing phases within the mesoporous film structure. Using X-ray absorption fine structure and high-resolution transmission electron microscopy coupled with electron energy loss spectroscopy, we find that Ti(IV) ions are incorporated within ilmenite (FeTiO) near-surface layers, thus modifying the semiconductor-electrolyte interface. To the best of our knowledge, this is the first time that an FeTiO/α-FeO composite is used in a photoelectrochemical setup for water oxidation. In fact, previous studies of Ti(IV)-modified hematite photoanodes reported the formation of pseudobrookite (FeTiO) at the surface. By means of transient absorption spectroscopy, transient photocurrent experiments, and electrochemical impedance spectroscopy, we show that the formation of the FeO/FeTiO interface passivates deep traps at the surface and induces a large density of donor levels, resulting in a strong depletion field that separates electron and holes, favoring hole injection in the electrolyte. Our results provide the identification of a phase coexistence with enhanced photoelectrochemical performance, allowing for the rational design of new photoanodes with improved kinetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8014905PMC
http://dx.doi.org/10.1021/acsami.0c12275DOI Listing

Publication Analysis

Top Keywords

water oxidation
12
photoelectrochemical water
8
better ilmenite/hematite
4
ilmenite/hematite junctions
4
photoelectrochemical
4
junctions photoelectrochemical
4
oxidation hematite
4
hematite α-feo
4
α-feo earth-abundant
4
earth-abundant indirect
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!