Upcoming professional sports authorities seek rapid noninvasive biosensing tools for regular monitoring of athletes' physiological states. The analysis of saliva through luminescence-based biosensors has been perceived as a suitable candidate for such purposes. The present study reports a qualitative bioluminescence assay based on a coupled enzyme system that consists of bacterial luciferase (BLuc) and nicotinamide adenine dinucleotide (NADH):flavin mononucleotide (FMN) oxidoreductase (Red), BLuc-Red, for the express diagnostics of athletes' stress levels before and after physical exertion. The volunteers who participated in the study were grouped as freestyle wrestlers and students who adapted to different levels of physical activities. Under physical exertion modelling conditions, the influence of participant saliva on BLuc-Red catalyzed light emission was investigated. Results showed a significant increase in residual luminescence (I , mean maximum bioluminescence intensity of the experimental measurement (I ); I , luminescence intensity in control; I /I , %) values for participants in the wrestler group while a decrease in the student group (P < 0.05). Such contrasting residual luminescence values in both groups were found to be dependent on the catalase activity of saliva. The proposed bioluminescence assay can be utilized as a potential nonspecific biosensing tool for determining the physical state of athletes under high loads.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bio.3954 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!