Subsurface microbial communities mediate the transformation and fate of redox sensitive materials including organic matter, metals and radionuclides. Few studies have explored how changing geochemical conditions influence the composition of groundwater microbial communities over time. We temporally monitored alterations in abiotic forces on microbial community structure using 1L in-field bioreactors receiving background and contaminated groundwater at the Oak Ridge Reservation, TN. Planktonic and biofilm microbial communities were initialized with background water for 4 days to establish communities in triplicate control reactors and triplicate test reactors and then fed filtered water for 14 days. On day 18, three reactors were switched to receive filtered groundwater from a contaminated well, enriched in total dissolved solids relative to the background site, particularly chloride, nitrate, uranium, and sulfate. Biological and geochemical data were collected throughout the experiment, including planktonic and biofilm DNA for 16S rRNA amplicon sequencing, cell counts, total protein, anions, cations, trace metals, organic acids, bicarbonate, pH, Eh, DO, and conductivity. We observed significant shifts in both planktonic and biofilm microbial communities receiving contaminated water. This included a loss of rare taxa, especially amongst members of the Bacteroidetes, Acidobacteria, Chloroflexi, and Betaproteobacteria, but enrichment in the Fe- and nitrate- reducing Ferribacterium and parasitic Bdellovibrio. These shifted communities were more similar to the contaminated well community, suggesting that geochemical forces substantially influence microbial community diversity and structure. These influences can only be captured through such comprehensive temporal studies, which also enable more robust and accurate predictive models to be developed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521895 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232437 | PLOS |
Proc Natl Acad Sci U S A
January 2025
Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602.
is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.
View Article and Find Full Text PDFPLoS One
January 2025
Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok, Thailand.
Modern treatment, a healthy diet, and physical activity routines lower the risk factors for metabolic syndrome; however, this condition is associated with all-cause and cardiovascular mortality worldwide. This investigation involved a randomized controlled trial, double-blind, parallel study. Fifty-eight participants with risk factors of metabolic syndrome according to the inclusion criteria were randomized into two groups and given probiotics (Lacticaseibacillus paracasei MSMC39-1 and Bifidobacterium animalis TA-1) (n = 31) or a placebo (n = 27).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
Older individuals experience increased susceptibility and mortality to bacterial infections, but the underlying etiology remains unclear. Herein, it is shown that aging-associated reduction of commensal Parabacteroides goldsteinii (P. goldsteinii) in both aged mice and humans critically contributes to worse outcomes of bacterial infection.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Institute of Microbiology and Dahlem Centre of Plant Sciences, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.
The leaf surface, known as the phylloplane, presents an oligotrophic and heterogeneous environment due to its topography and uneven distribution of resources. Although it is a challenging environment, leaves support abundant bacterial communities that are spatially structured. However, the factors influencing these spatial distribution patterns are not well understood.
View Article and Find Full Text PDFAstrobiology
January 2025
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA.
Exploration missions to Mars rely on landers or rovers to perform multiple analyses over geographically small sampling regions, while landing site selection is done using large-scale but low-resolution remote-sensing data. Utilizing Earth analog environments to estimate small-scale spatial and temporal variation in key geochemical signatures and biosignatures will help mission designers ensure future sampling strategies meet mission science goals. Icelandic lava fields can serve as Mars analog sites due to conditions that include low nutrient availability, temperature extremes, desiccation, and isolation from anthropogenic contamination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!