A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnhmcpt7p4ea5m2qucgt273c8cro0eb9t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

3D Retinal Vessel Density Mapping With OCT-Angiography. | LitMetric

Optical Coherence Tomography Angiography (OCTA) is a novel, non-invasive imaging modality of retinal capillaries at micron resolution. Recent studies have correlated macular OCTA vascular measures with retinal disease severity and supported their use as a diagnostic tool. However, these measurements mostly rely on a few summary statistics in retinal layers or regions of interest in the two-dimensional (2D) en face projection images. To enable 3D and localized comparisons of retinal vasculature between longitudinal scans and across populations, we develop a novel approach for mapping retinal vessel density from OCTA images. We first obtain a high-quality 3D representation of OCTA-based vessel networks via curvelet-based denoising and optimally oriented flux (OOF). Then, an effective 3D retinal vessel density mapping method is proposed. In this framework, a vessel density image (VDI) is constructed by diffusing the vessel mask derived from OOF-based analysis to the entire image volume. Subsequently, we utilize a non-linear, 3D OCT image registration method to provide localized comparisons of retinal vasculature across subjects. In our experimental results, we demonstrate an application of our method for longitudinal qualitative analysis of two pathological subjects with edema during the course of clinical care. Additionally, we quantitatively validate our method on synthetic data with simulated capillary dropout, a dataset obtained from a normal control (NC) population divided into two age groups and a dataset obtained from patients with diabetic retinopathy (DR). Our results show that we can successfully detect localized vascular changes caused by simulated capillary loss, normal aging, and DR pathology even in presence of edema. These results demonstrate the potential of the proposed framework in localized detection of microvascular changes and monitoring retinal disease progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737654PMC
http://dx.doi.org/10.1109/JBHI.2020.3023308DOI Listing

Publication Analysis

Top Keywords

vessel density
16
retinal vessel
12
retinal
9
density mapping
8
retinal disease
8
localized comparisons
8
comparisons retinal
8
retinal vasculature
8
proposed framework
8
simulated capillary
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!