Abscisic acid modulates differential physiological and biochemical responses of roots, stems, and leaves in mung bean seedlings to cadmium stress.

Environ Sci Pollut Res Int

School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering in Gansu Province, 88 West Anning Road, Lanzhou, 730070, People's Republic of China.

Published: February 2021

Experiments were conducted to determine how exogenous abscisic acid (ABA) mediates the tolerance of plants to cadmium (Cd) exposure. Cd stress strongly reduced all the growth parameters of mung bean seedlings. Cd significantly increased ascorbate peroxidase (APX) and catalase (CAT) activities in roots and stems, and peroxidase (POD) activities in roots, stems, and leaves of mung bean seedlings. Cd caused remarkable increases in the levels of leaf chlorophyll and carotenoid, root polyphenols, and malondialdehyde (MDA) and proline in the three organs. However, Cd greatly decreased leaf CAT activity, root and leaf ascorbic acid (AsA) levels, and stem and leaf polyphenol levels. Foliar application of ABA partially alleviated Cd toxicity on the seedlings. ABA could restore most of the changed biochemical parameters caused by Cd, suggesting that ABA played roles in the protection of membrane lipid peroxidation and the modulation of antioxidative defense systems in response to Cd stress. Our results also implied the differential physiological and biochemical responsive patterns of roots, stems, and leaves to Cd and ABA in mung bean seedlings. The great changes in many biochemical parameters in roots suggested that roots were the first to be affected by Cd and play pivotal roles in response to Cd, especially in chelating Cd and reducing Cd absorption.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-10843-8DOI Listing

Publication Analysis

Top Keywords

roots stems
16
mung bean
16
bean seedlings
16
stems leaves
12
abscisic acid
8
differential physiological
8
physiological biochemical
8
leaves mung
8
activities roots
8
biochemical parameters
8

Similar Publications

Researchers have reported that Bacillus megaterium BM18-2 reduces Cd toxicity in Hybrid Pennisetum, but understanding the interaction between plants and associated endophytes is crucial for understanding phytoremediation strategies under heavy metal stress. The current study aims to monitor the colonization patterns of GFP-labeled endophytic bacteria BM18-2 on Hybrid Pennisetum grass. Additionally, it will monitor Cd's effect on plant bacterial colonization.

View Article and Find Full Text PDF

Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.

View Article and Find Full Text PDF

Background: Space-induced plant mutagenesis, driven by cosmic radiation, offers a promising approach for the selective breeding of new plant varieties. By leveraging the unique environment of outer space, we successfully induced mutagenesis in 'Deqin' alfalfa and obtained a fast-growing mutant. However, the molecular mechanisms underlying its rapid growth remain poorly unexplored.

View Article and Find Full Text PDF

Orthosiphon aristatus (O. aristatus) has been used as a popular traditional folk medicine for the treatment of kidney disease. Recent studies have shown that O.

View Article and Find Full Text PDF

Despite its important pharmacological bioactivities, betulinic acid is still primarily obtained through extraction from heartwood and bark or synthesized synthetically, with less than 3% efficiency. Our endemic rose species, Rosa pisiformis (Christ.) D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!