AI Article Synopsis

  • Experience shapes behavior, but the brain mechanisms behind this are not fully understood, particularly in how network-level changes enhance performance.* -
  • Researchers studied larval zebrafish to see how experience with live prey versus inert food affects their ability to successfully capture prey, finding that prior experience increases capture success by enhancing initiation of the attack.* -
  • The study revealed that experienced zebrafish show heightened activity in specific brain areas (like the telencephalon and habenula) which helps them respond more quickly to visual stimuli, improving their overall prey capture performance.*

Article Abstract

Experience influences behavior, but little is known about how experience is encoded in the brain, and how changes in neural activity are implemented at a network level to improve performance. Here we investigate how differences in experience impact brain circuitry and behavior in larval zebrafish prey capture. We find that experience of live prey compared to inert food increases capture success by boosting capture initiation. In response to live prey, animals with and without prior experience of live prey show activity in visual areas (pretectum and optic tectum) and motor areas (cerebellum and hindbrain), with similar visual area retinotopic maps of prey position. However, prey-experienced animals more readily initiate capture in response to visual area activity and have greater visually-evoked activity in two forebrain areas: the telencephalon and habenula. Consequently, disruption of habenular neurons reduces capture performance in prey-experienced fish. Together, our results suggest that experience of prey strengthens prey-associated visual drive to the forebrain, and that this lowers the threshold for prey-associated visual activity to trigger activity in motor areas, thereby improving capture performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7561350PMC
http://dx.doi.org/10.7554/eLife.56619DOI Listing

Publication Analysis

Top Keywords

live prey
12
larval zebrafish
8
zebrafish prey
8
prey capture
8
experience live
8
motor areas
8
visual area
8
capture performance
8
prey-associated visual
8
experience
7

Similar Publications

The inherent deficiency of phospholipids in limits its nutritional value as live prey for marine fish larvae. In our previous study, we optimized a phospholipid enrichment method by incubating nauplii with 10 g of soybean lecithin per m of seawater for 12 h, significantly enhancing their phospholipid content. : The present study evaluated the impact of this enrichment on yellow drum () larvae, focusing on growth performance, intestinal morphology, body composition, weaning success, and desiccation stress resistance.

View Article and Find Full Text PDF

How consumer diversity determines consumption efficiency is a central issue in ecology. In the context of predation and biological control, this relationship concerns predator diversity and predation efficiency. Reduced predation efficiency can result from different predator taxa eating each other in addition to their common prey (interference due to intraguild predation).

View Article and Find Full Text PDF

Phenotypic plasticity in body growth enables organisms to cope with unpredictable paucities in resource availability. Growth traits influence survival and reproductive success, and thereby, population persistence, and early-life resource availability may govern lifetime patterns in growth, reproductive success, and survival. The influence of early-life environment is decidedly consequential for indeterminately growing ectotherms, which rely on available resources and ambient temperatures to maximize fitness throughout life.

View Article and Find Full Text PDF

Carnivory in plants is an unusual trait that has arisen multiple times, independently, throughout evolutionary history. Plants in the genus are carnivorous and feed on microorganisms that live in soil using modified subterranean leaf structures (rhizophylls). A surprisingly broad array of microfauna has been observed in the plants' digestive chambers, including ciliates, amoebae, and soil mites.

View Article and Find Full Text PDF

Aims: Myxobacteria are non-pathogenic, saprophytic, soil-dwelling predatory bacteria known for their antimicrobial potential. Many pathogenic bacteria form biofilms to protect themselves from antimicrobial agents and the immune system. This study has investigated the predatory activities of myxobacteria against pathogenic bacteria in biofilms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!