Tomato spotted wilt virus (TSWV, Genus Orthotospovirus, Family Tospoviridae) is a thrips-transmitted negative-stranded RNA virus with a large host range. Major economic losses caused by TSWV have been recorded in various crops such as tomato, pepper and lettuce (Pappu et al., 2009; Adams et al., 2017). Nasturtium (Tropaeolum majus L.), a common flowering plant species native to Peru, is generally cultivated as a garden and greenhouse ornamental plant in China. It is also known for its medical, edible and cosmetic values (Jakubczyk et al., 2018). In June 2019, a serious leaf mosaic disease (Figure S1) was observed in ~77% of T. majus plants in Beiling Park in Shenyang City, Liaoning, China. To reveal the possible viral agent associated with the disease, leaf tissue was collected from 9 symptomatic and 2 asymptomatic plants, followed by total RNA extraction from each of the samples using RNASimple Total RNA Kit (Tiangen, Beijing, China). The RNA from one representative symptomatic sample (Figure S1, d) was used to construct an rRNA-depleted library using the Ribo-Zero™ rRNA Removal Kit (Plant Leaf) (Illumina, CA, USA). The library was subjected to RNA-Seq using a BGISEQ platform (Shenzhen Huada Gene Science and Technology Service Co., Ltd., Shenzhen, China). A total of 109,279,540 quality-filtered reads were obtained using the CLC Genomics Workbench 9.5 software (Qiagen, Valencia, CA, USA). Clean reads were assembled into 88,091 contigs ranging in length from 200 to 19,695 bp using Velvet (Zerbino and Birney 2008). Among the contigs, three sized at 8801, 4617 and 2909 bp were found to share a sequence identity of 98.74-99.35% with the RNA segments (L, M and S) of TSWV. No sequences of other viruses, viroids included, were detected. Ten primer pairs were designed based on the TSWV contigs to obtain the full genome sequence of the virus (Table S1). Five, three, and two amplicons were obtained for the TSWV RNA segments L, M and S, respectively, from the same RNA sample used in the RNA-Seq process. These amplicons were then cloned into the pMD18T vector (TaKaRa, Dalian, China) and Sanger sequenced. The resulting sequences were assembled and analyzed using the DNAMAN version 8.0 (LynnonBiosoft, Quebec, Canada) and DNAStar version 6.0 software (DNAStar Inc, Madison, WI, USA) (Table S1). The RNA segments were determined to be 8,914 nt (L, accession no. MT241883), 4,791 nt (M, MT241884) and 2,922 nt (S, MT241885) in length. They shared a sequence identity of >99% with the "LL-N.05" (segment L, KP008128) and "SPAIN-1" (segment S, AY744479) isolates from tomatoes in Spain and the "Beijing" isolate (segment M, MH717046) from chrysanthemum in China. These results, together with phylogenetic analysis, suggest that the isolate (designated as isolate LN-HJL) was likely resulted from genome reassortment between other isolates. No reliable recombination events were detected in the RNA segments of LN-HJL by the RDP4 program (Martin et al., 2015). RT-PCR assay with primer pair S-1F/1R on all samples led to positive detection of TSWV only in the symptomatic samples (Figure S1, g), indicating that the virus was likely responsible for the disease symptoms observed in T. majus. To the best of our knowledge, this is the first report of the TSWV infection in T. majus in China, and the second in the world since the first report in the USA (Ie, 1964). TSWV-infected T. majus plants not only lose their aesthetic and economic values (Figure S1, f), but also may act as reservoirs for the spread of TSWV to other important crops. T. majus should therefore be monitored regularly for the virus and managed accordingly in China.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-03-20-0688-PDNDOI Listing

Publication Analysis

Top Keywords

rna segments
16
tswv
9
china
9
rna
9
tomato spotted
8
spotted wilt
8
wilt virus
8
virus tswv
8
nasturtium tropaeolum
8
tropaeolum majus
8

Similar Publications

Structural insights into human topoisomerase 3β DNA and RNA catalysis and nucleic acid gate dynamics.

Nat Commun

January 2025

Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.

Type IA topoisomerases (TopoIAs) are present in all living organisms. They resolve DNA/RNA catenanes, knots and supercoils by breaking and rejoining single-stranded DNA/RNA segments and allowing the passage of another nucleic acid segment through the break. Topoisomerase III-β (TOP3B), the only RNA topoisomerase in metazoans, promotes R-loop disassembly and translation of mRNAs.

View Article and Find Full Text PDF

Segment-specific promoter activity for RNA synthesis in the genome of Oz virus, genus Thogotovirus.

Virology

January 2025

Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan. Electronic address:

Oz virus (OZV), a tick-borne, six-segmented negative-strand RNA virus in the genus Thogotovirus, caused a fatal human infection in Japan in 2023. To study viral RNA synthesis, we developed an OZV minigenome assay using mammalian cells. This revealed variations in promoter activities among the six genome segments.

View Article and Find Full Text PDF

Tulip mild mottle mosaic disease, caused by tulip mild mottle mosaic virus (TMMMV, species Ophiovirus tulipae), was first reported in Japan in 1979. TMMMV has a negative-sense ssRNA genome and is closely related to ophioviruses such as Mirafiori lettuce big vein virus (MLBVV, Ophiovirus mirafioriense). However, its complete nucleotide sequence has not yet been reported.

View Article and Find Full Text PDF

Identification of a Novel HIV-1 Second-Generation Circulating Recombinant Form (CRF117_0107) in China.

AIDS Res Hum Retroviruses

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.

Under the background of the main epidemic HIV strains (CRF01_AE and CRF07_BC) co-circulation in China, more HIV second-generation recombinant (SGR) strains with CRF01_AE and CRF07_BC as the backbone were also emerging. In this study, we characterize a novel HIV-1 second-generation circulating recombinant form (CRF117_0107) consisting of CRF01_AE and CRF07_BC fragments from three epidemiologically unrelated HIV-1-infected individuals. One near full-length genome (NFLG) sequence was amplified, sequenced, and spliced in two halves using RNA extracted from the plasma of a homosexual in Shenzhen, Guangdong Province.

View Article and Find Full Text PDF

Successful Diagnosis of Sengers Syndrome Using a Comprehensive Genomic Analysis.

Mol Genet Genomic Med

January 2025

Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.

Background: Sengers syndrome is an autosomal recessive mitochondrial DNA depletion syndrome characterized by hypertrophic cardiomyopathy, congenital cataracts, skeletal myopathy, exercise intolerance, and lactic acidosis. Dysfunction of acylglycerol kinase (AGK) is responsible for the disease, and several AGK gene variants have been reported.

Methods: We employed a comprehensive genomic analysis approach, including whole-genome sequencing and RNA sequencing, combined with various bioinformatics tools.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!