We use computer simulations to study the morphology and rheological properties of a bidimensional emulsion resulting from a mixture of a passive isotropic fluid and an active contractile polar gel, in the presence of a surfactant that favours the emulsification of the two phases. By varying the intensity of the contractile activity and of an externally imposed shear flow, we find three possible morphologies. For low shear rates, a simple lamellar state is obtained. For intermediate activity and shear rate, an asymmetric state emerges, which is characterized by shear and concentration banding at the polar/isotropic interface. A further increment in the active forcing leads to the self-assembly of a soft channel where an isotropic fluid flows between two layers of active material. We characterize the stability of this state by performing a dynamical test varying the intensity of the active forcing and shear rate. Finally, we address the rheological properties of the system by measuring the effective shear viscosity, finding that this increases as active forcing is increased-so that the fluid thickens with activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522284PMC
http://dx.doi.org/10.1038/s41598-020-72742-9DOI Listing

Publication Analysis

Top Keywords

active forcing
12
soft channel
8
rheological properties
8
isotropic fluid
8
varying intensity
8
shear rate
8
active
6
shear
6
channel formation
4
formation symmetry
4

Similar Publications

The P-type ATPase gene AHA5 is involved in proanthocyanidins accumulation in Medicago truncatula.

Int J Biol Macromol

January 2025

Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

Proanthocyanidins (PAs) are the second most abundant plant phenolic natural products. The proton membrane H-ATPase (AHA) is required for PA transportation in vacuoles, but it remains unclear which AHA gene(s) encode tonoplast proton pump in M. truncatula.

View Article and Find Full Text PDF

4',5,6,7-tetrahydoxyisoflavone (6-hydroxygenistein, 6-OHG) is a hydroxylated derivative of genistein with excellent antioxidant activity, but whether 6-OHG can protect hypoxia-induced damage is unclear. The objective of current study was to evaluate the protective effect and underling mechanism of 6-OHG against hypoxia-induced injury via network pharmacology and cellular experiments. 6-OHG-related and hypoxia injury-related targets were screened by public databases.

View Article and Find Full Text PDF

Insight into the effect of ZIF-8 on the interaction between drugs and protein/cell.

Int J Biol Macromol

January 2025

School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China. Electronic address:

Understanding the impact of nanomaterials on drug-protein/cell interactions is crucial for comprehending their in vivo biological effects. We investigated the impact of zeolitic imidazolate framework (ZIF)-8 on the interaction between curcumin (Cur) and human serum albumin (HSA) using various spectroscopic techniques and molecular docking. Additionally, we examined its effect on drug-cell interaction using HepG2 cells and Escherichia coli (E.

View Article and Find Full Text PDF

Transmembrane signaling receptors, such as integrins, organize as nanoclusters that provide several advantages, including increasing avidity, sensitivity (increasing the signal-to-noise ratio), and robustness (signaling threshold) of the signal in contrast to signaling by single receptors. Furthermore, compared to large micron-sized clusters, nanoclusters offer the advantage of rapid turnover for the disassembly of the signal. However, whether nanoclusters function as signaling hubs remains poorly understood.

View Article and Find Full Text PDF

An Antibacterial Hemostasis Sponge of Gelatin/ε-Poly-L-Lysine Composite.

J Biomed Mater Res B Appl Biomater

January 2025

Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P. R. China.

Massive bleeding and bacterial infection of wounds may be life-threatening or even lead to death. Nowadays, gelatin-based hemostatic sponges have been widely used, but gelatin is not antibacterial and has poor structural stability. In this study, we mixed an antibacterial polypeptide, ε-poly-L-lysine (EPL), into gelatin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!