The data set contains information on aboveground vegetation traits of > 100 georeferenced locations within ten temperate pre-Alpine grassland plots in southern Germany. The grasslands were sampled in April 2018 for the following traits: bulk canopy height; weight of fresh and dry biomass; dry weight percentage of the plant functional types (PFT) non-green vegetation, legumes, non-leguminous forbs, and graminoids; total green area index (GAI) and PFT-specific GAI; plant water content; plant carbon and nitrogen content (community values and PFT-specific values); as well as leaf mass per area (LMA) of PFT. In addition, a species specific inventory of the plots was conducted in June 2020 and provides plot-level information on grassland type and plant species composition. The data set was obtained within the framework of the SUSALPS project ("Sustainable use of alpine and pre-alpine grassland soils in a changing climate"; https://www.susalps.de/ ) to provide in-situ data for the calibration and validation of remote sensing based models to estimate grassland traits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522989 | PMC |
http://dx.doi.org/10.1038/s41597-020-00651-7 | DOI Listing |
Sci Rep
January 2025
Department of Electronic Engineering, Universidad Tecnica Federico Santa Maria, Valparaiso, Chile.
Assessing the health status of vegetation is of vital importance for all stakeholders. Multi-spectral and hyper-spectral imaging systems are tools for evaluating the health of vegetation in laboratory settings, and also hold the potential of assessing vegetation of large portions of land. However, the literature lacks benchmark datasets to test algorithms for predicting plant health status, with most researchers creating tailored datasets.
View Article and Find Full Text PDFLandsc Ecol
January 2025
Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden.
Context: The vegetation composition of northeastern North American forests has significantly changed since pre-settlement times, with a marked reduction in conifer-dominated stands, taxonomic and functional diversity. These changes have been attributed to fire regime shifts, logging, and climate change.
Methods: In this study, we disentangled the individual effects of these drivers on the forest composition in southwestern Quebec from 1830 to 2000 by conducting retrospective modelling using the LANDIS-II forest landscape model.
Ecol Appl
January 2025
Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
Intercorrelated aboveground traits associated with costs and plant growth have been widely used to predict vegetation in response to environmental changes. However, whether underground traits exhibit consistent responses remains unclear, particularly in N-rich subtropical forests. Responses of foliar and root morphological and physiological traits of tree and herb species after 8-year N, P, and combined N and P treatments (50 kg N, P, N and P ha year) were examined in leguminous Acacia auriculiformis (AA) and nonleguminous Eucalyptus urophylla (EU) forests in southern China.
View Article and Find Full Text PDFSoil salinization poses a significant ecological and environmental challenge both in China and across the globe. Plant growth-promoting rhizobacteria (PGPR) enhance plants' resilience against biotic and abiotic stresses, thereby playing a vital role in soil improvement and vegetation restoration efforts. PGPR assist plants in thriving under salt stress by modifying plant physiology, enhancing nutrient absorption, and synthesizing plant hormones.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Hohhot, 010021, China. Electronic address:
Arthropods play a critical role in the functioning of grassland ecosystems, and are largely affected by herbivore grazing. However, the mechanisms of grazing affecting arthropod community, especially through modulating plant traits and soil properties, are still unclear. We investigated the variation in arthropod community variables including family richness, activity-density, biomass, and body size in typical steppe grasslands subject to grazing at four intensity levels (nil, light, moderate and heavy) in central Inner Mongolia (China), and analyzed the relationships of these variations with grazing-induced changes in plant traits, plant community attributes and soil properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!