Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4.

Neural Regen Res

International Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.

Published: March 2021

Our previous studies showed that ferroptosis plays an important role in the acute and subacute stages of spinal cord injury. High intracellular iron levels and low glutathione levels make oligodendrocytes vulnerable to cell death after central nervous system trauma. In this study, we established an oligodendrocyte (OLN-93 cell line) model of ferroptosis induced by RSL-3, an inhibitor of glutathione peroxidase 4 (GPX4). RSL-3 significantly increased intracellular concentrations of reactive oxygen species and malondialdehyde. RSL-3 also inhibited the main anti-ferroptosis pathway, i.e., SLC7A11/glutathione/glutathione peroxidase 4 (xCT/GSH/GPX4), and downregulated acyl-coenzyme A synthetase long chain family member 4. Furthermore, we evaluated the ability of several compounds to rescue oligodendrocytes from ferroptosis. Liproxstatin-1 was more potent than edaravone or deferoxamine. Liproxstatin-1 not only inhibited mitochondrial lipid peroxidation, but also restored the expression of GSH, GPX4 and ferroptosis suppressor protein 1. These findings suggest that GPX4 inhibition induces ferroptosis in oligodendrocytes, and that liproxstatin-1 is a potent inhibitor of ferroptosis. Therefore, liproxstatin-1 may be a promising drug for the treatment of central nervous system diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996026PMC
http://dx.doi.org/10.4103/1673-5374.293157DOI Listing

Publication Analysis

Top Keywords

ferroptosis induced
8
glutathione peroxidase
8
central nervous
8
nervous system
8
ferroptosis liproxstatin-1
8
liproxstatin-1 potent
8
ferroptosis
7
liproxstatin-1
5
liproxstatin-1 effective
4
effective inhibitor
4

Similar Publications

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. However, the molecular mechanism underlying the occurrence and development of HCC remains unclear. We are interested in the function of m6A methylation enzyme WTAP in the occurrence and development of HCC.

View Article and Find Full Text PDF

TYMS Enhances Colorectal Cell Antioxidant Capacity Via the KEAP1-NRF2 Pathway to Resist Ferroptosis.

J Cancer

January 2025

The Colorectal and Anal Surgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China.

Thymidylate synthase (TYMS) is a key regulatory enzyme in DNA synthesis. We identified the biological effect and molecular mechanisms of TYMS in colorectal cancer (CRC). We employed western blot and immunohistochemistry for the assessment of TYMS expression in CRC samples.

View Article and Find Full Text PDF

BRAF-activated ARSI suppressed EREG-mediated ferroptosis to promote BRAF (mutant) papillary thyroid carcinoma progression and sorafenib resistance.

Int J Biol Sci

January 2025

Department of Thyroid and Hernia Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou City, Fujian Province 350001, China.

Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer, and patients with the BRAF mutation often exhibit aggressive tumor behavior. Here, we identified Arylsulfatase I (ARSI) as a gene whose expression was significantly upregulated in BRAF PTC and was associated with poor prognosis. High ARSI expression correlated with advanced disease stage, BRAF mutation, and worse overall survival in PTC patients.

View Article and Find Full Text PDF

Identification of JNK-JUN-NCOA axis as a therapeutic target for macrophage ferroptosis in chronic apical periodontitis.

Int J Med Sci

January 2025

Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

This study aimed to investigate the involvement of macrophage ferroptosis in chronic apical periodontitis (CAP) and determine if blocking JNK/JUN/NCOA4 axis could alleviate CAP by regulating macrophage ferroptosis. Firstly, the models of apical periodontitis (AP) and models of CAP, including clinical specimens and rats' periapical lesions, were utilized to investigate the role of macrophage ferroptosis in CAP by detecting the ferroptosis related factors. The activation of the JNK/JUN/NCOA4 axis was observed in CAP models.

View Article and Find Full Text PDF

Background: Sorafenib is a first-line treatment for hepatocellular carcinoma (HCC); however, acquired resistance often results in a poor prognosis, indicating a need for more effective therapies. Sorafenib induces cell death through an iron-dependent mechanism known as ferroptosis, which is closely associated with the onset and progression of HCC.

Methods: This study investigated the role of ACSL3 in sorafenib resistance and ferroptosis in HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!