Introduction: A low-vision assessment (LVA) is critical in developing a vision rehabilitation plan. A remotely delivered LVA that replicates a standard in-clinic assessment may bridge the gap for patients not accessing care due to the limited quantity and distribution of low-vision providers. Within an LVA, an accurate and consistent assessment of refraction error is an essential component. No system has currently been validated for the purposes of a remote LVA. The purpose of this study was to validate a commercially available portable refraction approach in a low-vision population.
Methods: Low-vision patients ( = 26) or normally sighted patients ( = 25) underwent a refraction assessment using the Adaptica® 2WIN autorefractor, adaptor scope (Kaleidos) and VisionFit phoropter portable refraction devices, as well as a standard autorefractor (Huvitz) and phoropter (Haag-Streit). Refraction data between systems and populations were compared using intraclass correlations. Bland-Altman plots were used to assess the differences between devices.
Results: Spherical equivalent values were found to be reproducible between standard and experimental autorefraction devices (intraclass correlation coefficient (ICC) > 0.8) in both low-vision and normally sighted groups. Similarly, manifest refraction was highly consistent (ICC > 0.8) between devices in all groups. The Bland-Altman plots showed clinically acceptable mean differences of 0.701 between autorefraction methods and -0.116 between manifest refraction methods.
Discussion: The 2WIN/VisionFit system can reliably generate refraction values across a spectrum of errors in normally sighted and visually impaired people, and would be feasible to deliver remotely.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1357633X20960628 | DOI Listing |
Sci Rep
December 2024
Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany.
In the last decade, grating-based phase-contrast computed tomography (gbPC-CT) has received growing interest. It provides additional information about the refractive index decrement in the sample. This signal shows an increased soft-tissue contrast.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Chair in Hybrid Nanosystems, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany.
Multilayered van der Waals (vdW) materials are semiconductors composed of atomically thin crystal layers, held together by weak vdW forces. They offer unique crystal structures and electronic properties, distinct from conventional semiconductors, making them a promising platform for linear and nonlinear optics. In this context, the large refractive indexes given by highly polarizable transition metals, combined with excitonic resonances and unconventional crystalline structures, provides a toolbox for exploring non-linear physics and strong light-matter interactions with unprecedented opportunities for nanoscale optics.
View Article and Find Full Text PDFPurpose: A performance comparison of two myopia control spectacle lens designs, defocus incorporated multiple segments (DIMS) and highly aspherical lenslets (HAL), at slowing myopia progression in a European child/adolescent population. Previous research directly comparing these designs has been limited to Chinese participants and 1-year follow-up. The prevalence of myopia in European child/adolescent has been estimated at 22.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
Astrocytes, integral components of the central nervous system, are increasingly recognized for their multifaceted roles beyond support cells. Despite their acknowledged importance, understanding the intricacies of astrocyte morphological dynamics remains limited. Our study marks the first exploration of astrocytes using optical diffraction tomography (ODT), establishing a label-free, quantitative method to observe morphological changes in astrocytes over a 7-day in-vitro period.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Ophthalmology, Samsung Medical Center School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea.
Background: To evaluate the ocular biometry agreement and prediction of postoperative refractive outcomes obtained using two swept-source optical coherence tomography (SS-OCT) biometers: Anterion (Heidelberg Engineering, Heidelberg, Germany) and Argos (Alcon, Fort Worth, TX, USA).
Methods: Ambispective analysis was conducted on 105 eyes at the Samsung Medical Center, Seoul, Republic of Korea, between June 2021 and March 2022. Biometric values were assessed using both devices before cataract surgery.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!