Metabolic reconstruction of Pseudomonas chlororaphis ATCC 9446 to understand its metabolic potential as a phenazine-1-carboxamide-producing strain.

Appl Microbiol Biotechnol

Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.

Published: December 2020

Pseudomonas chlororaphis is a plant-associated bacterium with reported antagonistic activity against different organisms and plant growth-promoting properties. P. chlororaphis possesses exciting biotechnological features shared with another Pseudomonas with a nonpathogenic phenotype. Part of the antagonistic role of P. chlororaphis is due to its production of a wide variety of phenazines. To expand the knowledge of the metabolic traits of this organism, we constructed the first experimentally validated genome-scale model of P. chlororaphis ATCC 9446, containing 1267 genes and 2289 reactions, and analyzed strategies to maximize its potential for the production of phenazine-1-carboxamide (PCN). The resulting model also describes the capability of P. chlororaphis to carry out the denitrification process and its ability to consume sucrose (Scr), trehalose, mannose, and galactose as carbon sources. Additionally, metabolic network analysis suggested fatty acids as the best carbon source for PCN production. Moreover, the optimization of PCN production was performed with glucose and glycerol. The optimal PCN production phenotype requires an increased carbon flux in TCA and glutamine synthesis. Our simulations highlight the intrinsic HO flux associated with PCN production, which may generate cellular stress in an overproducing strain. These results suggest that an improved antioxidative strategy could lead to optimal performance of phenazine-producing strains of P. chlororaphis. KEY POINTS : • This is the first publication of a metabolic model for a strain of P. chlororaphis. • Genome-scale model is worthy tool to increase the knowledge of a non model organism. • Fluxes simulations indicate a possible effect of HO on phenazines production. • P. chlororaphis can be a suitable model for a wide variety of compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-020-10913-4DOI Listing

Publication Analysis

Top Keywords

pcn production
16
chlororaphis
9
pseudomonas chlororaphis
8
chlororaphis atcc
8
atcc 9446
8
wide variety
8
genome-scale model
8
production
7
model
6
metabolic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!