A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessment of a Sour Water Treatment Unit Using Process Simulation, Parametric Sensitivity, and Exergy Analysis. | LitMetric

Assessment of a Sour Water Treatment Unit Using Process Simulation, Parametric Sensitivity, and Exergy Analysis.

ACS Omega

Chemical Engineering Department, Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), University of Cartagena, Avenida del Consulado Calle 30 No. 48-152, Cartagena 130014, Colombia.

Published: September 2020

In this work, a sour water treatment unit was evaluated combining exergetic analysis and parametric sensitivity analysis. Process simulation was performed using Aspen HYSYS 10.1 following real refinery configurations, and the results were validated with existing data. The parametric sensitivity was evaluated by varying the effect of process variables to identify an alternative case with the best technical performance. The exergy analysis was applied to both base and alternative cases. The outcomes were exergy efficiency by stages, global exergy efficiency, total irreversibilities, and exergy by industrial services. A comparison of both cases was performed to identify opportunities for improvement in real sour water treatment. Results revealed that the overall exergy efficiency for the base case was 44.28%. After improving the technical performance, the overall exergy efficiency decreased to 36.12%; the latter indicated higher irreversibilities due to the increase in the use of industrial services. This finding suggested that those process improvements may affect the performance of this refinery unit from an exergetic point of view.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512459PMC
http://dx.doi.org/10.1021/acsomega.0c02300DOI Listing

Publication Analysis

Top Keywords

exergy efficiency
16
sour water
12
water treatment
12
parametric sensitivity
12
treatment unit
8
process simulation
8
exergy analysis
8
technical performance
8
performance exergy
8
industrial services
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!