In December 2019 a new beta-coronavirus was isolated and characterized by sequencing samples from pneumonia patients in Wuhan, Hubei Province, China. Coronaviruses are positive-sense RNA viruses widely distributed among different animal species and humans in which they cause respiratory, enteric, liver and neurological symptomatology. Six species of coronavirus have been described (HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1) that cause cold-like symptoms in immunocompetent or immunocompromised subjects and two strains of sometimes fatal zoonotic origin that cause severe acute respiratory syndrome (SARS-CoV and MERS-CoV). The SARS-CoV-2 strain is the emerging seventh member of the coronavirus family, which is actually determining a global emergency. analysis is a promising approach for understanding biological events in complex diseases and due to serious worldwide emergency and serious threat to global health, it is extremely important to use bioinformatics methods able to study an emerging pathogen like SARS-CoV-2. Herein, we report on comparative analysis between complete genome of SARS-CoV, MERS-CoV, HCoV-OC43 and SARS-CoV-2 strains, to identify the occurrence of specific conserved motifs on viral genomic sequences which should be able to bind and therefore induce a subtraction of host's Transcription Factors (TFs) which lead to a depletion, an effect comparable to haploinsufficiency (a genetic dominant condition in which a single copy of wild-type allele at a locus, in heterozygous combination with a variant allele, is insufficient to produce the correct quantity of transcript and, therefore, of protein, for a correct standard phenotypic expression). In this competitive scenario, virus versus host, the proposed protocol identified the TFs same as the distribution of TFBSs (Transcription Factor Binding Sites) on analyzed viral strains, potentially able to influence genes and pathways with biological functions confirming that this approach could brings useful insights regarding SARS-CoV-2. According to our results obtained by this approach it is possible to hypothesize that TF-binding motifs could be of help in the explanation of the complex and heterogeneous clinical presentation in SARS-CoV-2 and subsequently predict possible interactions regarding metabolic pathways, and drug or target relationships.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7501776 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2020.e05010 | DOI Listing |
Virol J
January 2025
Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Acute kidney injury (AKI) is a condition that can result in changes in both urine production and creatinine levels in the bloodstream, complicating the treatment process and worsening outcomes for many hospitalized patients. BK polyomavirus (BKPyV), a member of the Polyomaviridae family, is prevalent in the population and remains latent in the body. It can reactivate in individuals with a compromised immune system, particularly post-kidney transplant, and can activate various transcription factors and immune mediators.
View Article and Find Full Text PDFVirology
December 2024
Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA. Electronic address:
Decades of research have defined the function of interferon regulatory factors (IRFs) in the antiviral immune response. Interferon regulatory factor-1 (IRF-1) is the founding member of the IRF family, with recognized antiviral effects across diverse virus infections. While most antiviral activities of IRF-1 were defined in vitro, fewer studies examined the role of IRF-1 during viral infection of an intact host.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Human Microbiology Institute, New York, NY, 10014, USA.
Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan Province, 650224, China.
Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China.
Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!