Background: Angiogenesis is a critical step in the growth of pancreatic neuroendocrine tumors (PNETs) and may be a selective target for PNET therapy. However, PNETs are robustly resistant to current anti-angiogenic therapies that primarily target the VEGFR pathway. Thus, the mechanism of PNET angiogenesis urgently needs to be clarified.

Methods: Dataset analysis was used to identify angiogenesis-related genes in PNETs. Immunohistochemistry was performed to determine the relationship among Neuropilin 2 (NRP2), VEGFR2 and CD31. Cell proliferation, wound-healing and tube formation assays were performed to clarify the function of NRP2 in angiogenesis. The mechanism involved in NRP2-induced angiogenesis was detected by constructing plasmids with mutant variants and performing Western blot, and immunofluorescence assays. A mouse model was used to evaluate the effect of the NRP2 antibody in vivo, and clinical data were collected from patient records to verify the association between NRP2 and patient prognosis.

Results: NRP2, a VEGFR2 co-receptor, was positively correlated with vascularity but not with VEGFR2 in PNET tissues. NRP2 promoted the migration of human umbilical vein endothelial cells (HUVECs) cultured in the presence of conditioned medium PNET cells via a VEGF/VEGFR2-independent pathway. Moreover, NRP2 induced F-actin polymerization by activating the actin-binding protein cofilin. Cofilin phosphatase slingshot-1 (SSH1) was highly expressed in NRP2-activating cofilin, and silencing SSH1 ameliorated NRP2-activated HUVEC migration and F-actin polymerization. Furthermore, blocking NRP2 in vivo suppressed PNET angiogenesis and tumor growth. Finally, elevated NRP2 expression was associated with poor prognosis in PNET patients.

Conclusion: Vascular NRP2 promotes PNET angiogenesis by activating the SSH1/cofilin/actin axis. Our findings demonstrate that NRP2 is an important regulator of angiogenesis and a potential therapeutic target of anti-angiogenesis therapy for PNET.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509939PMC
http://dx.doi.org/10.1186/s13578-020-00472-6DOI Listing

Publication Analysis

Top Keywords

pnet angiogenesis
16
nrp2
11
pnet
9
vascular nrp2
8
angiogenesis
8
angiogenesis activating
8
nrp2 vegfr2
8
f-actin polymerization
8
nrp2 triggers
4
triggers pnet
4

Similar Publications

As one of the most common solid pediatric cancers, Neuroblastoma (NBL) accounts for 15% of all of the cancer-related mortalities in infants with increasing incidence all around the world. Despite current therapeutic approaches for NBL (radiotherapies, surgeries, and chemotherapies), these approaches could not be beneficial for all of patients with NBL due to their low effectiveness, and some severe side effects. These challenges lead basic medical scientists and clinical specialists toward an optimal medical interventions for clinical management of NBL.

View Article and Find Full Text PDF

Neuroblastoma-derived hypoxic extracellular vesicles promote metastatic dissemination in a zebrafish model.

PLoS One

December 2024

Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy.

The zebrafish (Danio rerio) is a valuable model organism for studying human biology due to its easy genetic manipulation and small size. It is optically transparent and shares genetic similarities with humans, making it ideal for studying developmental processes, diseases, and drug screening via imaging-based approaches. Solid malignant tumors often contain hypoxic areas that stimulate the release of extracellular vesicles (EVs), lipid-bound structures released by cells into the extracellular space, that facilitate short- and long-range intercellular communication and metastatization.

View Article and Find Full Text PDF

Xenotransplantation of neuroblastoma cells into larval zebrafish allows the characterization of their tumorigenic abilities and high-throughput treatment screening. This established preclinical model traditionally relies on microinjection into the yolk or perivitelline space, leaving the engraftment ability of cells at the hindbrain ventricle (HBV) and pericardial space (PCS), sites valuable for evaluating metastasis, angiogenesis, and the brain microenvironment, unknown. To address this gap in knowledge, Casper zebrafish at 48 h postfertilization were microinjected with approximately 200 Kelly, Be(2)-C, SK-N-AS, or SY5Y cells into either the HBV or PCS.

View Article and Find Full Text PDF

Neuroblastoma is a common nervous system tumor in childhood, and current treatments are not adequate. HSP90 is a molecular chaperone protein that plays a critical role in the regulation of cancer-related proteins. HSP90 inhibition may exert anticancer effects by targeting cancer-related processes such as tumor growth, cell proliferation, metastasis, and apoptosis.

View Article and Find Full Text PDF

Roles and interactions of tumor microenvironment components in medulloblastoma with implications for novel therapeutics.

Genes Chromosomes Cancer

April 2024

Department of Pediatric Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China.

Medulloblastomas, the most common malignant pediatric brain tumors, can be classified into the wingless, sonic hedgehog (SHH), group 3, and group 4 subgroups. Among them, the SHH subgroup with the TP53 mutation and group 3 generally present with the worst patient outcomes due to their high rates of recurrence and metastasis. A novel and effective treatment for refractory medulloblastomas is urgently needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!