Background: Bacterial biofilms are known to have high antibiotic tolerance which directly affects clearance of bacterial infections in people with cystic fibrosis (CF). Current antibiotic susceptibility testing methods are either based on planktonic cells or do not reflect the complexity of biofilms . Consequently, inaccurate diagnostics affect treatment choice, preventing bacterial clearance and potentially selecting for antibiotic resistance. This leads to prolonged, ineffective treatment.

Methods: In this study, we use an lung biofilm model to study antibiotic tolerance and virulence of . Sections of pig bronchiole were dissected, prepared and infected with clinical isolates of and incubated in artificial sputum media to form biofilms, as previously described. Then, lung-associated biofilms were challenged with antibiotics, at therapeutically relevant concentrations, before their bacterial load and virulence were quantified and detected, respectively.

Results: The results demonstrated minimal effect on the bacterial load with therapeutically relevant concentrations of ciprofloxacin and meropenem, with the latter causing an increased production of proteases and pyocyanin. A combination of meropenem and tobramycin did not show any additional decrease in bacterial load but demonstrated a slight decrease in total proteases and pyocyanin production.

Conclusion: In this initial study of six clinical isolates of showed high levels of antibiotic tolerance, with minimal effect on bacterial load and increased proteases production, which could negatively affect lung function. Thus, the lung model has the potential to be effectively used in larger studies of antibiotic tolerance in -like biofilms, and show how sub optimal antibiotic treatment of biofilms may potentially contribute to exacerbations and eventual lung failure. We demonstrate a realistic model for understanding antibiotic resistance and tolerance in biofilms clinically and for molecules screening in anti-biofilm drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7492588PMC
http://dx.doi.org/10.3389/fmicb.2020.568510DOI Listing

Publication Analysis

Top Keywords

antibiotic tolerance
16
bacterial load
16
lung biofilm
8
biofilm model
8
antibiotic
8
antibiotic resistance
8
clinical isolates
8
therapeutically relevant
8
relevant concentrations
8
minimal bacterial
8

Similar Publications

Hawthorn carbon dots: a novel therapeutic agent for modulating body weight and hepatic lipid profiles in high-fat diet-fed mice.

Nanoscale

January 2025

Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA.

Obesity, a chronic metabolic disorder characterized by excessive body weight and adipose tissue accumulation, is intricately linked to a spectrum of health complications. It is driven by a confluence of factors, including gut microbiota dysbiosis, inflammation, and oxidative stress, which are pivotal in its pathogenesis. A multifaceted therapeutic strategy that targets these interrelated pathways is essential for effective obesity management.

View Article and Find Full Text PDF

Multiple physiological response analyses of Chlorella vulgaris exposed to silver nanoparticles, ciprofloxacin, and their combination.

Environ Toxicol Chem

January 2025

Laboratorio de Ecotoxicología, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.

The combination of silver nanoparticles (AgNPs) and ciprofloxacin (CIP) can be considered an alternative to combat multidrug-resistant microbial infections. However, knowledge about their combined toxicity is scarce after being released in an aquatic environment. The present study evaluated the individual toxicity of AgNPs and CIP and their combined toxicity on the unicellular green microalga Chlorella vulgaris, evaluating cellular responses and conducting metabolomic analysis.

View Article and Find Full Text PDF

NKTCL is a highly aggressive malignant tumor, especially prevalent in the southern regions of China. Although chemotherapy regimens based on ADM have achieved certain therapeutic effects in early treatment, the issue of ADM resistance severely limits the therapeutic efficacy and makes it difficult to improve patient survival rates. Our research results indicate that the expression level of APOC1 is closely related to the sensitivity of NKTCL cells to ADM.

View Article and Find Full Text PDF

Therapeutic regimens against infection without proton pump inhibitors in patients with corpus atrophic gastritis: a real-life single-centre longitudinal observational study.

Therap Adv Gastroenterol

January 2025

Digestive Disease Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Teaching Hospital, Sapienza University of Rome, via di Grottarossa 1035, Rome 00189, Italy.

Background: Efficacy of eradication regimens in (Hp) infection is commonly reported with proton pump inhibitors (PPIs). In patients with corpus atrophic gastritis, characterized by impaired acid secretion, PPI treatment is questionable.

Objectives: The current study aimed to assess in clinical practice the tolerability and eradication rate of modified eradication regimens without PPI as first-line treatment in patients with histologically Hp-positive corpus atrophic gastritis.

View Article and Find Full Text PDF

Deep eutectic solvent enhances antibacterial activity of a modular lytic enzyme against Acinetobacter baumannii.

Sci Rep

January 2025

Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland.

In this study, we evaluated the combined effect between MLE-15, a modular lytic enzyme composed of four building blocks, and reline, a natural deep eutectic solvent. The bioinformatic analysis allowed us to determine the spatial architecture of MLE-15, whose components were bactericidal peptide cecropin A connected via a flexible linker to the cell wall binding domain (CBD) of mesophilic 201ϕ2 - 1 endolysin and catalytic domain (EAD) of highly thermostable Ph2119 endolysin. The modular enzyme showed high thermostability with the melting temperature of 93.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!