Development and Application of a Prophage Integrase Typing Scheme for Group B .

Front Microbiol

Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom.

Published: August 2020

Group B (GBS) is a gram-positive pathogen mainly affecting humans, cattle, and fishes. Mobile genetic elements play an important role in the evolution of GBS, its adaptation to host species and niches, and its pathogenicity. In particular, lysogenic prophages have been associated with a high virulence of certain strains and with their ability to cause invasive infections in humans. It is therefore important to be able to accurately detect and classify prophages in GBS genomes. Several bioinformatic tools for the identification of prophages in bacterial genomes are available on-line. However, genome searches for most of these programs are affected by the composition of their reference database. Lack of databases specific to GBS results in failure to recognize all prophages in the species. Additionally, performance of these programs is affected by genome fragmentation in the case of draft genomes, leading to underestimation of the number of phages. They also prove impractical when dealing with large genome datasets and they do not offer a quick way of classifying bacteriophages. We developed a GBS-specific method to screen genome assemblies for the presence of prophages and to classify them based on a reproducible typing scheme. This was achieved through an extensive search of a vast number of high-quality GBS sequences ( = 572) originating from different host species and countries in order to build a database of phage integrase types, on which the scheme is based. The proposed typing scheme comprises 12 integration sites and sixteen prophage integrase types, including multiple subtypes per integration site and integrase genes that were not site-specific. Two putative phage-inducible chromosomal islands (PICI) and their insertion sites were also identified during the course of these analyses. Phages were common and diverse in all major clonal complexes associated with human disease and detected in isolates from every animal species and continent included in the study. This database will facilitate further work on the prevalence and role of prophages in GBS evolution, and identifies the roles of PICIs in GBS and of prophage in hypervirulent ST283 as areas for further research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487436PMC
http://dx.doi.org/10.3389/fmicb.2020.01993DOI Listing

Publication Analysis

Top Keywords

typing scheme
12
prophage integrase
8
host species
8
prophages gbs
8
integrase types
8
gbs
7
prophages
6
development application
4
application prophage
4
integrase
4

Similar Publications

Genomic analysis of the main epidemiological lineages of in Mexico.

Front Cell Infect Microbiol

January 2025

Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Departamento de Diagnóstico Epidemiológico, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico.

has emerged as a critical global health threat due to its exceptional survival skills in adverse environment and its ability to acquire antibiotic resistance, presenting significant challenges for infection treatment and control. The World Health Organization has classified carbapenem-resistant as a "Critical Priority" pathogen to guide research and the development of control and prevention strategies. Epidemiological surveillance methodologies provide the tools necessary for classifying into international clonal lineages, facilitating the analysis of molecular characteristics, global dissemination, and evolution.

View Article and Find Full Text PDF

MTIOT: Identifying HPV subtypes from multiple infection data.

Comput Struct Biotechnol J

December 2024

Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.

Persistent infection with high-risk human papillomavirus (hrHPV) is a major cause of cervical cancer. The effectiveness of current HPV-DNA testing, which is crucial for early detection, is limited in several aspects, including low sensitivity, accuracy issues, and the inability to perform comprehensive hrHPV typing. To address these limitations, we introduce MTIOT (Multiple subTypes In One Time), a novel detection method that utilizes machine learning with a new multichannel integration scheme to enhance HPV-DNA analysis.

View Article and Find Full Text PDF

Carbapenem-resistant Acinetobacter baumannii (CRAB) is an emerging threat to healthcare settings in many countries, principally in South Asia. The current study was aimed to identify, evaluate whole-genome and characterize the prophages in genome of CRAB strain, recovered from patients of Lahore General Hospital, Lahore. More than 200 samples were collected and identified by morphological and biochemical tests.

View Article and Find Full Text PDF

Examining the role of Acinetobacter baumannii plasmid types in disseminating antimicrobial resistance.

NPJ Antimicrob Resist

January 2024

Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, Australia.

Acinetobacter baumannii is a Gram-negative pathogen responsible for hospital-acquired infections with high levels of antimicrobial resistance (AMR). The spread of multidrug-resistant A. baumannii strains has become a global concern.

View Article and Find Full Text PDF

Background: Colistin is an antibiotic used as a last resort to treat multidrug-resistant Gram-negative bacterial infections. Plasmid-mediated mobile colistin-resistant () genes in () are disseminated globally and are considered to be a major public health threat. This study aimed to determine the molecular characteristics of colistin-resistant isolates in clinical settings in Pakistan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!