Group B (GBS) is a gram-positive pathogen mainly affecting humans, cattle, and fishes. Mobile genetic elements play an important role in the evolution of GBS, its adaptation to host species and niches, and its pathogenicity. In particular, lysogenic prophages have been associated with a high virulence of certain strains and with their ability to cause invasive infections in humans. It is therefore important to be able to accurately detect and classify prophages in GBS genomes. Several bioinformatic tools for the identification of prophages in bacterial genomes are available on-line. However, genome searches for most of these programs are affected by the composition of their reference database. Lack of databases specific to GBS results in failure to recognize all prophages in the species. Additionally, performance of these programs is affected by genome fragmentation in the case of draft genomes, leading to underestimation of the number of phages. They also prove impractical when dealing with large genome datasets and they do not offer a quick way of classifying bacteriophages. We developed a GBS-specific method to screen genome assemblies for the presence of prophages and to classify them based on a reproducible typing scheme. This was achieved through an extensive search of a vast number of high-quality GBS sequences ( = 572) originating from different host species and countries in order to build a database of phage integrase types, on which the scheme is based. The proposed typing scheme comprises 12 integration sites and sixteen prophage integrase types, including multiple subtypes per integration site and integrase genes that were not site-specific. Two putative phage-inducible chromosomal islands (PICI) and their insertion sites were also identified during the course of these analyses. Phages were common and diverse in all major clonal complexes associated with human disease and detected in isolates from every animal species and continent included in the study. This database will facilitate further work on the prevalence and role of prophages in GBS evolution, and identifies the roles of PICIs in GBS and of prophage in hypervirulent ST283 as areas for further research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487436 | PMC |
http://dx.doi.org/10.3389/fmicb.2020.01993 | DOI Listing |
Front Cell Infect Microbiol
January 2025
Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Departamento de Diagnóstico Epidemiológico, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico.
has emerged as a critical global health threat due to its exceptional survival skills in adverse environment and its ability to acquire antibiotic resistance, presenting significant challenges for infection treatment and control. The World Health Organization has classified carbapenem-resistant as a "Critical Priority" pathogen to guide research and the development of control and prevention strategies. Epidemiological surveillance methodologies provide the tools necessary for classifying into international clonal lineages, facilitating the analysis of molecular characteristics, global dissemination, and evolution.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.
Persistent infection with high-risk human papillomavirus (hrHPV) is a major cause of cervical cancer. The effectiveness of current HPV-DNA testing, which is crucial for early detection, is limited in several aspects, including low sensitivity, accuracy issues, and the inability to perform comprehensive hrHPV typing. To address these limitations, we introduce MTIOT (Multiple subTypes In One Time), a novel detection method that utilizes machine learning with a new multichannel integration scheme to enhance HPV-DNA analysis.
View Article and Find Full Text PDFCurr Genet
January 2025
Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad, 44000, Pakistan.
Carbapenem-resistant Acinetobacter baumannii (CRAB) is an emerging threat to healthcare settings in many countries, principally in South Asia. The current study was aimed to identify, evaluate whole-genome and characterize the prophages in genome of CRAB strain, recovered from patients of Lahore General Hospital, Lahore. More than 200 samples were collected and identified by morphological and biochemical tests.
View Article and Find Full Text PDFNPJ Antimicrob Resist
January 2024
Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, Australia.
Acinetobacter baumannii is a Gram-negative pathogen responsible for hospital-acquired infections with high levels of antimicrobial resistance (AMR). The spread of multidrug-resistant A. baumannii strains has become a global concern.
View Article and Find Full Text PDFFront Microbiol
January 2025
Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan.
Background: Colistin is an antibiotic used as a last resort to treat multidrug-resistant Gram-negative bacterial infections. Plasmid-mediated mobile colistin-resistant () genes in () are disseminated globally and are considered to be a major public health threat. This study aimed to determine the molecular characteristics of colistin-resistant isolates in clinical settings in Pakistan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!