https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=32982802&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3298280220220417
1664-042X112020Frontiers in physiologyFront PhysiolNo Association Between T-peak to T-end Interval on the Resting ECG and Long-Term Incidence of Ventricular Arrhythmias Triggering ICD Interventions.11151115111510.3389/fphys.2020.01115Potential of using the T-peak to T-end (TpTe) interval as an electrocardiographic parameter reflecting the transmural dispersion of ventricular repolarization (TDR) to identify patients (pts.) with higher risk of malignant ventricular arrhythmias (MVA) for better selection of candidates for implantable cardioverter-defibrillator (ICD) in primary prevention (PP) of sudden cardiac death (SCD) remains controversial. The primary objective of this study was to investigate the relationship between the TpTe interval in patient's preimplantation resting 12-lead electrocardiogram (ECG) and the incidence of MVA resulting in appropriate ICD intervention (AI). The secondary objective was to assess its relationship to overall mortality.A total of 243 consecutive pts. with severe left ventricular (LV) systolic dysfunction after myocardial infarction (MI) with a single-chamber ICD for PP of SCD from one implantation center were included. Excluded were all pts. with any other disease that could interfere with the indication of ICD implantation. Primarily investigated intervals were measured manually in accordance with accepted methodology. Data on ICD interventions were acquired from device interrogation during regular outpatient visits. Survival data were collected from the databases of health insurance and regulatory authorities.We did not find a significant relationship between the duration of the TpTe interval and the incidence of MVA (71.5 ms in pts. with MVA vs. 70 ms in pts. without MVA; p = 0.408). Similar results were obtained for the corrected TpTe interval (TpTec) and the ratio of TpTe to QT interval (76.3 ms vs. 76.5 ms; p = 0.539 and 0.178 vs. 0.181; p = 0.547, respectively). There was also no significant difference between the duration of TpTe, TpTec and TpTe/QT ratio in pts. groups by overall mortality (71.5 ms in the deceased group vs. 70 ms in the survivors group; HR 1.01; 95% CI, 0.99-1.02; p = 0.715, 76.3 ms vs. 76.5 ms; HR 1.01; 95% CI, 0.99-1.02; p = 0.208 and 0.178 vs. 0.186; p = 0.116, respectively).This study suggests no significant association of overall or MVA-free survival with ECG parameters reflecting TDR (TpTe, TpTec) in patients with systolic dysfunction after MI and ICD implanted for primary prevention.Copyright © 2020 Michalek, Hatahet, Svetlosak, Margitfalvi, Waczulikova, Trnovec, Böhm, Benacka and Hatala.MichalekPeterPFaculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.HatahetSasha BenjaminSBFaculty of Medicine, Slovak Medical University in Bratislava, Bratislava, Slovakia.SvetlosakMartinMDepartment of Arrhythmias and Cardiac Pacing, The National Institute of Cardiovascular Diseases, Bratislava, Slovakia.MargitfalviPeterPDepartment of Arrhythmias and Cardiac Pacing, The National Institute of Cardiovascular Diseases, Bratislava, Slovakia.WaczulikovaIvetaIFaculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia.TrnovecSebastianSFaculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.BöhmAllanAFaculty of Medicine, Slovak Medical University in Bratislava, Bratislava, Slovakia.Department of Acute Cardiology, The National Institute of Cardiovascular Diseases, Bratislava, Slovakia.BenackaOndrejOFaculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.Department of Arrhythmias and Cardiac Pacing, The National Institute of Cardiovascular Diseases, Bratislava, Slovakia.HatalaRobertRFaculty of Medicine, Slovak Medical University in Bratislava, Bratislava, Slovakia.Department of Arrhythmias and Cardiac Pacing, The National Institute of Cardiovascular Diseases, Bratislava, Slovakia.engJournal Article20200831
SwitzerlandFront Physiol1015490061664-042XT-peak to T-endelectrocardiographyprimary prevention of sudden cardiac deathtransmural dispersion of ventricular repolarizationventricular tachyarrhythmia
2020527202081120209285392020929602020929612020831epublish32982802PMC748819210.3389/fphys.2020.01115Antzelevitch C. (2010). M cells in the human heart. Circ. Res. 106 815–817. 10.1161/circresaha.109.21622610.1161/circresaha.109.216226PMC285989420299671Antzelevitch C., Sicouri S., Litovsky S., Lukas A., Krishnan S., Di Diego J., et al. (1991). Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circ. Res. 69 1427–1449. 10.1161/01.res.69.6.142710.1161/01.res.69.6.14271659499Bazett H. C. (1920). An analysis of the time-relations of electrocardiograms. Heart 7 353–370.Defaye P., Boveda S., Klug D., Beganton F., Piot O., Narayanan K., et al. (2017). Dual- vs. single-chamber defibrillators for primary prevention of sudden cardiac death: long-term follow-up of the défibrillateur automatique implantable—prévention primaire registry. EP Europace 19 1478–1484. 10.1093/europace/euw23010.1093/europace/euw23028340096Doi S., Islam N., Sulaiman K., Alsheikh-Ali A., Singh R., Al-Qahtani A., et al. (2019). Demystifying smoker’s paradox: a propensity score–weighted analysis in patients hospitalized with acute heart failure. J. Am. Heart Assoc. 8:e013056. 10.1161/jaha.119.01305610.1161/jaha.119.013056PMC691295831779564Drouin E., Charpentier F., Gauthier C., Laurent K., Le Marec H. (1995). Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: evidence for presence of M cells. J. Am. Coll. Cardiol. 26 185–192. 10.1016/0735-1097(95)00167-x10.1016/0735-1097(95)00167-x7797750Fonarow G., Abraham W., Albert N., Stough W., Gheorghiade M., Greenberg B., et al. (2008). A smoker’s paradox in patients hospitalized for heart failure: findings from OPTIMIZE-HF. Eur. Heart J. 29 1983–1991. 10.1093/eurheartj/ehn21010.1093/eurheartj/ehn21018487210García-Pérez L., Pinilla-Domínguez P., García-Quintana A., Caballero-Dorta E., García-García F., Linertová R., et al. (2014). Economic evaluations of implantable cardioverter defibrillators: a systematic review. Eur. J. Health. Econ. 16 879–893. 10.1007/s10198-014-0637-x10.1007/s10198-014-0637-x25323413Goldenberg I., Moss A., Zareba W. (2006). QT interval: how to measure it and what is “normal”. J. Cardiovasc. Electrophysiol. 17 333–336. 10.1111/j.1540-8167.2006.00408.x10.1111/j.1540-8167.2006.00408.x16643414Greenlee R., Go A., Peterson P., Cassidy-Bushrow A., Gaber C., Garcia-Montilla R., et al. (2018). Device therapies among patients receiving primary prevention implantable cardioverter-defibrillators in the cardiovascular research network. J. Am. Heart Assoc. 7:e008292. 10.1161/jaha.117.00829210.1161/jaha.117.008292PMC590759929581222Gupta P., Patel C., Patel H., Narayanaswamy S., Malhotra B., Green J., et al. (2008). Tp-e/QT ratio as an index of arrhythmogenesis. J. Electrocardiol. 41 567–574. 10.1016/j.jelectrocard.2008.07.01610.1016/j.jelectrocard.2008.07.01618790499Haarmark C., Hansen P., Vedel-Larsen E., Haahr Pedersen S., Graff C., Andersen M., et al. (2009). The prognostic value of the Tpeak-Tend interval in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. J. Electrocardiol. 42 555–560. 10.1016/j.jelectrocard.2009.06.00910.1016/j.jelectrocard.2009.06.00919643432Lee D., Krahn A., Healey J., Birnie D., Crystal E., Dorian P., et al. (2010). Evaluation of early complications related to de novo cardioverter defibrillator implantation. J. Am. Coll. Cardiol. 55 774–782. 10.1016/j.jacc.2009.11.02910.1016/j.jacc.2009.11.02920170816Lellouche N., De Diego C., Akopyan G., Boyle N., Mahajan A., Cesario D., et al. (2007). Changes and predictive value of dispersion of repolarization parameters for appropriate therapy in patients with biventricular implantable cardioverter-defibrillators. Heart Rhythm 4 1274–1283. 10.1016/j.hrthm.2007.06.01210.1016/j.hrthm.2007.06.01217905332Letsas K., Weber R., Astheimer K., Kalusche D., Arentz T. (2009). Tpeak-Tend interval and Tpeak-Tend/QT ratio as markers of ventricular tachycardia inducibility in subjects with Brugada ECG phenotype. Europace 12 271–274. 10.1093/europace/eup35710.1093/europace/eup35719897501Malik M., Huikuri H., Lombardi F., Schmidt G., Verrier R., Zabel M. (2019). Is the Tpeak-Tend interval as a measure of repolarization heterogeneity dead or just seriously wounded? Heart Rhythm 16 952–953. 10.1016/j.hrthm.2019.01.01510.1016/j.hrthm.2019.01.01530660561Morin D., Saad M., Shams O., Owen J., Xue J., Abi-Samra F., et al. (2012). Relationships between the T-peak to T-end interval, ventricular tachyarrhythmia, and death in left ventricular systolic dysfunction. Europace 14 1172–1179. 10.1093/europace/eur42610.1093/europace/eur42622277646Olde Nordkamp L., Postema P., Knops R., van Dijk N., Limpens J., Wilde A., et al. (2016). Implantable cardioverter-defibrillator harm in young patients with inherited arrhythmia syndromes: a systematic review and meta-analysis of inappropriate shocks and complications. Heart Rhythm 13 443–454. 10.1016/j.hrthm.2015.09.01010.1016/j.hrthm.2015.09.01026385533Padwal R., McAlister F., McMurray J., Cowie M., Rich M., Pocock S., et al. (2013). The obesity paradox in heart failure patients with preserved versus reduced ejection fraction: a meta-analysis of individual patient data. Int. J. Obes. 38 1110–1114. 10.1038/ijo.2013.20310.1038/ijo.2013.20324173404Peterson P., Varosy P., Heidenreich P., Wang Y., Dewland T., Curtis J., et al. (2013). Association of single- vs dual-chamber ICDs with mortality, readmissions, and complications among patients receiving an ICD for primary prevention. JAMA 309:2025. 10.1001/jama.2013.498210.1001/jama.2013.4982PMC375292423677314Porthan K., Viitasalo M., Toivonen L., Havulinna A., Jula A., Tikkanen J., et al. (2013). Predictive value of electrocardiographic T-wave morphology parameters and T-wave peak to T-wave end interval for sudden cardiac death in the general population. Circ. Arrhythm. Electrophysiol. 6 690–696. 10.1161/circep.113.00035610.1161/circep.113.00035623881778Raghavan S., Vassy J., Ho Y., Song R., Gagnon D., Cho K., et al. (2019). Diabetes mellitus–related all-cause and cardiovascular mortality in a national cohort of adults. J. Am. Heart Assoc. 8:e011295. 10.1161/jaha.118.01129510.1161/jaha.118.011295PMC640567830776949Rosenthal T., Masvidal D., Abi Samra F., Bernard M., Khatib S., Polin G., et al. (2017). Optimal method of measuring the T-peak to T-end interval for risk stratification in primary prevention. EP Europace 20 698–705. 10.1093/europace/euw43010.1093/europace/euw43028339886Rosenthal T., Stahls P., Abi Samra F., Bernard M., Khatib S., Polin G., et al. (2015). T-peak to T-end interval for prediction of ventricular tachyarrhythmia and mortality in a primary prevention population with systolic cardiomyopathy. Heart Rhythm 12 1789–1797. 10.1016/j.hrthm.2015.04.03510.1016/j.hrthm.2015.04.03525998895Santangeli P., Pelargonio G., Dello Russo A., Casella M., Bisceglia C., Bartoletti S., et al. (2010). Gender differences in clinical outcome and primary prevention defibrillator benefit in patients with severe left ventricular dysfunction: a systematic review and meta-analysis. Heart Rhythm 7 876–882. 10.1016/j.hrthm.2010.03.04210.1016/j.hrthm.2010.03.04220380893Shimizu W., Antzelevitch C. (1998). Cellular basis for the ECG features of the LQT1 form of the long-QT syndrome. Circulation 98 2314–2322. 10.1161/01.cir.98.21.231410.1161/01.cir.98.21.23149826320Sicouri S., Antzelevitch C. (1991). A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ. Res. 68 1729–1741. 10.1161/01.res.68.6.172910.1161/01.res.68.6.17292036721Smetana P., Schmidt A., Zabel M., Hnatkova K., Franz M., Huber K., et al. (2011). Assessment of repolarization heterogeneity for prediction of mortality in cardiovascular disease: peak to the end of the T wave interval and nondipolar repolarization components. J. Electrocardiol. 44 301–308. 10.1016/j.jelectrocard.2011.03.00410.1016/j.jelectrocard.2011.03.00421511064Srinivasan N., Orini M., Providencia R., Simon R., Lowe M., Segal O., et al. (2019). Differences in the upslope of the precordial body surface ECG T wave reflect right to left dispersion of repolarization in the intact human heart. Heart Rhythm 16 943–951. 10.1016/j.hrthm.2018.12.00610.1016/j.hrthm.2018.12.006PMC654696930550836Sticherling C., Arendacka B., Svendsen J. H., Wijers S., Friede T., Stockinger J., et al. (2018). Sex differences in outcomes of primary prevention implantable cardioverter-defibrillator therapy: combined registry data from eleven European countries. Europace 20 963–970. 10.1093/europace/eux17610.1093/europace/eux176PMC598278529016784Strömberg A., Fluur C., Miller J., Chung M., Moser D., Thylén I. (2014). ICD recipients’ understanding of ethical issues, ICD function, and practical consequences of withdrawing the ICD in the end-of-life. Pacing Clin. Electrophysiol. 37 834–842. 10.1111/pace.1235310.1111/pace.1235324483943Theuns D., Rivero-Ayerza M., Boersma E., Jordaens L. (2008). Prevention of inappropriate therapy in implantable defibrillators: a meta-analysis of clinical trials comparing single-chamber and dual-chamber arrhythmia discrimination algorithms. Int. J. Cardiol. 125 352–357. 10.1016/j.ijcard.2007.02.04110.1016/j.ijcard.2007.02.04117445918Turagam M., Velagapudi P., Kocheril G. A. (2013). Standardization of QRS duration measurement and LBBB criteria in CRT trials and clinical practice. Curr. Cardiol. Rev. 9 20–23. 10.2174/15734031380507626910.2174/157340313805076269PMC358430423116056van der Velde M., Matsushita K., Coresh J., Astor B., Woodward M., Levey A., et al. (2011). Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 79 1341–1352. 10.1038/ki.2010.53610.1038/ki.2010.53621307840Watanabe N., Kobayashi Y., Tanno K., Miyoshi F., Asano T., Kawamura M., et al. (2004). Transmural dispersion of repolarization and ventricular tachyarrhythmias. J. Electrocardiol. 37 191–200. 10.1016/j.jelectrocard.2004.02.00210.1016/j.jelectrocard.2004.02.00215286932Yan G., Wu Y., Liu T., Wang J., Marinchak R., Kowey P. (2001). Phase 2 early afterdepolarization as a trigger of polymorphic ventricular tachycardia in acquired long-QT syndrome. Circulation 103 2851–2856. 10.1161/01.cir.103.23.285110.1161/01.cir.103.23.285111401944Yılmaz M. (2017). A novel electrocardiographic enigma: the measurement technique, interpretation of the Tp-e/QT ratio and its diagnostic use in making clinical decisions. Int. J. Curr. Med. Pharm. Res. 3 2827–2832. 10.24327/23956429.ijcmpr2017034810.24327/23956429.ijcmpr20170348