The Jack Rabbit II Special Sonic Anemometer Study (JRII-S), a field project designed to examine the flow and turbulence within a systematically arranged mock-urban environment constructed from CONEX shipping containers, is described in detail. The study involved the deployment of 35 sonic anemometers at multiple heights and locations, including a 32 m tall, unobstructed tower located about 115 m outside the building array to document the approach wind flow characteristics. The purpose of this work was to describe the experimental design, analyze the sonic data, and report observed wind flow patterns within the urban canopy in comparison to the approaching boundary layer flow. We show that the flow within the building array follows a tendency towards one of three generalized flow regimes displaying channeling over a wide range of wind speeds, directions, and stabilities. Two or more sonic anemometers positioned only a few meters apart can have vastly different flow patterns that are dictated by the building structures. Within the building array, turbulence values represented by normalized vertical velocity variance ( ) are at least two to three times greater than that in the approach flow. There is also little evidence that measured at various heights or locations within the JRII array is a strong function of stability type in contrast to the approach flow. The results reinforce how urban areas create complicated wind patterns, channeling effects, and localized turbulence that can impact the dispersion of an effluent release. These findings can be used to inform the development of improved wind flow algorithms to better characterize pollutant dispersion in fast-response models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7510952 | PMC |
http://dx.doi.org/10.1016/j.atmosenv.2020.117871 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Electronics Sciences and Technology Division, United States Naval Research Laboratory, Washington, DC 20375.
This study presents the direct measurement of proton transport along filamentous , or cable bacteria. Cable bacteria are filamentous multicellular microorganisms that have garnered much interest due to their ability to serve as electrical conduits, transferring electrons over several millimeters. Our results indicate that cable bacteria can also function as protonic conduits because they contain proton wires that transport protons at distances >100 µm.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
Cognition relies on transforming sensory inputs into a generalizable understanding of the world. Mirror neurons have been proposed to underlie this process, mapping visual representations of others' actions and sensations onto neurons that mediate our own, providing a conduit for understanding. However, this theory has limitations.
View Article and Find Full Text PDFPLoS One
January 2025
Swansea Community Farm, Swansea, Wales, United Kingdom.
Background: As an umbrella term, social prescribing offers varied routes into society which promise to support, enhance, and empower individual citizens to take control of their own health and wellbeing. Globally healthcare systems are struggling to cope with the increasing demands of an ageing population and the NHS (UK) is no exception. Social prescribing is heralded as a means to relieve the burden on primary care and provide support for the 20% of patients whose needs are non-medical.
View Article and Find Full Text PDFChembiochem
January 2025
Nanjing University, School of Chemistry and Chemical Engineering, 163 Xianlin Avenue, 210023, Nanjing, CHINA.
DNA double crossover (DX) motifs including DAE (double crossover, antiparallel, even spacing) and DAO (double crossover, antiparallel, odd spacing) are well-known monolayered DNA building blocks for construction of 2D DNA arrays and tubes in nanoscale and microscale. Compared to the 3D architectures of DNA origami and single-stranded DNA bricks to build nanoscale 3D bundles, tessellations, gears, castles, etc., designs of double- and multi-layers of DX motifs for 3D architectures are still limited.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
Eukaryotic DNA is packaged in the cell nucleus into chromatin, composed of arrays of DNA-histone protein octamer complexes, the nucleosomes. Over the past decade, it has become clear that chromatin structure in vivo is not a hierarchy of well-organized folded nucleosome fibers but displays considerable conformational variability and heterogeneity. In vitro and in vivo studies, as well as computational modeling, have revealed that attractive nucleosome-nucleosome interaction with an essential role of nucleosome stacking defines chromatin compaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!