Among the vast number of noncommunicable diseases encountered worldwide, cardiovascular diseases accounted for about 17.8 million deaths in 2017 and ischemic heart disease (IHD) remains the single-largest cause of death in countries across all income groups. Because conventional medications are not without shortcomings and patients still refractory to these medications, scientific investigation is ongoing to advance the management of IHD, and shows a great promise for better treatment modalities, but additional research can warrant improvement in terms of the quality of life of patients. Metabolic modulation is one promising strategy for the treatment of IHD, because alterations in energy metabolism are involved in progression of the disease. Therefore, the purpose of this review was to strengthen attention toward the use of metabolic modulators and to review the current level of knowledge on cardiac energy metabolic pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7501978 | PMC |
http://dx.doi.org/10.2147/VHRM.S264130 | DOI Listing |
J Exp Bot
January 2025
National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil.
The transport of metabolites across the inner mitochondrial membrane (IMM) is crucial for maintaining energy balance and efficient distribution of metabolic intermediates between cellular compartments. Under abiotic stress, mitochondrial function becomes particularly critical, activating complex signaling pathways essential for plant stress responses. These pathways modulate stress-responsive gene expression, influencing key physiological processes such as cell respiration and senescence, helping plants adapt to stress.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).
View Article and Find Full Text PDFSci Rep
January 2025
Division of Hematology, Second Xiang-ya Hospital, Central South University, Changsha, China.
Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.
View Article and Find Full Text PDFMetabolomics
January 2025
Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!