Enzymatic Synthesis of Poly(glycerol sebacate): Kinetics, Chain Growth, and Branching Behavior.

Macromolecules

Institute of Chemistry, University of Campinas, 13083-970 Campinas, SP, Brazil.

Published: September 2020

Immobilized lipase B (CALB)-catalyzed polycondensation of glycerol and sebacic acid at mild reaction conditions resulted in branched poly(glycerol sebacate) (PGS). To understand how PGS chains grow and branch, the kinetics of the CALB-catalyzed polycondensation were studied. The influence of the reaction temperature, solvent, CALB amount, and sebacic acid/glycerol feed ratio on the poly(glycerol sebacate) (PGS) molecular weight, degree of branching, and glyceridic repetitive unit distribution was also investigated. PGS architecture changes from linear to branched with the progression of the reaction, and the branching results from the simultaneous CALB-catalyzed esterification and acyl migration. For reactions performed in acetone at the temperature range from 30 to 50 °C, the apparent rate constant increases from 0.7 to 1.5 h, and the apparent energy of activation of 32 kJ mol was estimated. The higher mass average molecular weight (16 kDa) and degree of branching (41%) were achieved using the equimolar sebacic acid/glycerol feed ratio in acetone at 40 °C with a CALB amount of 13.6 wt % and in the presence of the molecular sieves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513468PMC
http://dx.doi.org/10.1021/acs.macromol.0c01709DOI Listing

Publication Analysis

Top Keywords

polyglycerol sebacate
12
calb-catalyzed polycondensation
8
sebacate pgs
8
calb amount
8
sebacic acid/glycerol
8
acid/glycerol feed
8
feed ratio
8
molecular weight
8
degree branching
8
enzymatic synthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!