Ability of Post-treatment Glycyrrhizic Acid to Mitigate Cerebral Ischemia/Reperfusion Injury in Diabetic Mice.

Med Sci Monit

Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China (mainland).

Published: September 2020

BACKGROUND Diabetes aggravates cerebral ischemia/reperfusion (I/R) injury by increasing inflammatory reactions, but its specific mechanism is currently unclear. MATERIAL AND METHODS Diabetes was induced in mice with a high-fat diet combined with streptozotocin. These mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min, followed by reperfusion for 24-72 h and post-treatment glycyrrhizic acid (GA). Control and diabetic mice were randomly allocated to 8 groups of 18 mice each. Blood glucose, brain infarction, brain edema, and neurological function were monitored. Necrosis was determined by Nissl staining, loss of neurons by immunofluorescent (IF) staining for NeuN, and activation of inflammatory microglia by IF staining for Iba-1. Levels of HMGB1, TLR4, Myd88, and NF-kappaB mRNA and protein in ischemic brain were determined by qRT-PCR and western blotting, respectively, and serum concentrations of IL-1ß, IL-6, and TNF-alpha by ELISA. RESULTS Infarction volume, brain edema, and neurological function after tMCAO were significantly aggravated in diabetes, but ameliorated by post-treatment GA. GA also reduced neuronal loss and microglial activation. Cerebral Myd88 level showed a positive correlation with neurological scores. GA suppressed the expression of Myd88 and a proinflammatory pathway that included Myd88, HMGB1, TLR4, and NF-kappaB, as well as reducing serum concentrations of IL-1ß, IL-6, and TNF-alpha. CONCLUSIONS Post-treatment inhibited inflammatory responses and provided therapeutic benefits in diabetic mice with cerebral I/R injury, suggesting that GA may be a candidate drug to suppress cerebral I/R in diabetic patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531204PMC
http://dx.doi.org/10.12659/MSM.926551DOI Listing

Publication Analysis

Top Keywords

diabetic mice
12
post-treatment glycyrrhizic
8
glycyrrhizic acid
8
cerebral ischemia/reperfusion
8
i/r injury
8
brain edema
8
edema neurological
8
neurological function
8
hmgb1 tlr4
8
serum concentrations
8

Similar Publications

Progesterone sulfates are enterohepatically recycled and stimulate G protein-coupled bile acid receptor 1-mediated gut hormone release.

Am J Physiol Gastrointest Liver Physiol

January 2025

Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.

Sulfated progesterone metabolites (PMxS) increase during gestation and are raised further in intrahepatic cholestasis of pregnancy (ICP), a disorder characterised by pruritus and elevated serum bile acids. PMxS interact with bile acid receptor G protein-coupled bile acid receptor 1 (GPBAR1) to cause itch. We investigated whether PMxS could undergo enterohepatic recycling and stimulate intestinal GPBAR1-mediated release of gut hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY).

View Article and Find Full Text PDF

Aim: Type 2 diabetes mellitus (T2DM) is a metabolic syndrome characterised by absolute or relative insufficiency of insulin secretion. The alkaloids from Rhizoma coptidis have potential hypoglycemic effects. Epiberberine (EPI), a protoberberine alkaloid extracted from Rhizome coptidis, has been found to regulate lipid metabolism.

View Article and Find Full Text PDF

Background And Purpose: Kidney disease (KD) is a leading cause of mortality worldwide, affecting 〉10% of the global population. Two of the most common causes of KD are diabetes and acute kidney injury (AKI), both of which induce mitochondrial dysfunction resulting in renal proximal tubular damage/necrosis. Thus, pharmacological induction of mitochondrial biogenesis (MB) may provide a therapeutic strategy to block the onset/progression of KD.

View Article and Find Full Text PDF

Crystalline nephropathy (CN) is characterized by deposition of microcrystals within the kidney tubular microstructure, specifically in the renal tubular cells. Nephropathic conditions have been observed in kidney stone patients as nephrocalcinosis, resulting from the deposition of calcium phosphate (CaP) microcrystals mainly within the renal tubule. CaP microcrystals trigger nephrotoxicity and cell death leading to acute and chronic kidney disease and in some cases end stage renal disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!