Purpose: To evaluate the effect of Er:YAG laser on the roughness, surface topography, and bond strength to resin luting cement based on chemical and micro-abrasion pretreatments of different computer-aided design/computer-aided manufacturing materials.

Methods: A polymer-infiltrated-ceramic-network (PICN) material (Vita Enamic, VE), three indirect resin composite (Cerasmart, CS; Shofu HC, SH; Lava Ultimate, LU), and one lithium disilicate ceramic (IPS e.max CAD, EM) blocks were subjected to one of the following pretreatments: no treatment (NC ), Er:YAG etching with one of two powers (either 3 or 6 W), hydrofluoric acid (HF) etching, self-etching ceramic primer (ME), or micro-abrasion (MA). The shear bond strength (SBS) of resin luting cement to pretreated materials was tested. Surface roughness was measured via atomic force microscopy, and surface topography was analyzed via scanning electron microscopy. Two-way analysis of variance, Tukey post-hoc test, and Pearson correlation were applied.

Results: Etching EM and VE with HF or the ME resulted in the highest SBS values in their groups (P < 0.05). LU, SH, VE, and CS indicated similar SBS values when treated with 3 W, 6 W, and MA. The highest surface roughness (Sa ) values were obtained for the LU, CS, and VE groups when treated with 6 W, whereas the lowest Sa values were obtained for CS when treated with the ME and EM when treated with the ME or 3 W. Only SH and CS indicated a significant correlation between surface rough ness and bond strength.

Conclusions: Er:YAG laser etching is comparable to micro-abrasion when treating resin composite blocks and may induce fewer surface cracks. HF etching remains the gold standard for the treatment of glass-based ceramics and PICNs.

Download full-text PDF

Source
http://dx.doi.org/10.2186/jpr.JPOR_2020_50DOI Listing

Publication Analysis

Top Keywords

resin composite
12
eryag laser
8
surface topography
8
bond strength
8
resin luting
8
luting cement
8
surface roughness
8
sbs values
8
values groups
8
values treated
8

Similar Publications

Shear Strength of Adhesives Based on Solvent Type, Aged, and LED-cured with Different Wavelengths: An Study.

J Contemp Dent Pract

September 2024

Department of Academic, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru, ORCID: https://orcid.org/0000-0002-0594-5834.

Objective: To evaluate the shear strength of adhesives based on the type of solvent (ethanol and acetone), aged and light-cured using light-emitting diode (LED) units with different wavelengths. Polywave and monowave LED units were employed for this study.

Materials And Methods: Ninety bovine tooth samples were analyzed using OptiBond Universal adhesive (acetone) and single bond universal adhesive (ethanol).

View Article and Find Full Text PDF

Clinical Effectiveness of Biomaterials in Indirect Pulp Therapy Treatment of Young Permanent Molars with Deep Carious Lesions: A Case-Control Study.

Int J Clin Pediatr Dent

November 2024

Department of Pediatric and Preventive Dentistry, Shree Guru Gobind Singh Tricentenary Dental College, Hospital and Research Institute, Gurugram, Haryana, India.

Aim: The present case-control study was planned to assess the comparative efficacy of resin-modified calcium silicate, resin-modified glass ionomer, and Dycal as pulp capping agents in indirect pulp therapy for deeply carious young permanent molars.

Materials And Methods: Thirty deeply carious young posterior teeth were treated by indirect pulp therapy. During the treatment, the cavity floor was lined with TheraCal or resin-modified glass ionomer cement (RMGIC) in the study group and with Dycal (control group) followed by GC IX and composite restoration.

View Article and Find Full Text PDF

Aim: To compare the microleakage in class V cavities restored with Activa Bioactive Restorative, Activa Pronto, and nanohybrid composite.

Materials And Methods: Standardized class V cavity preparations (mesiodistal: 3 mm; occlusocervical: 2 mm; axial depth: 1 mm) were made on the buccal surface of 60 extracted intact maxillary premolar teeth. The preparations were divided into three experimental groups ( = 20) depending on the restorative material used.

View Article and Find Full Text PDF

Polymer composite materials encounter considerable challenges in sustaining superior tribological properties at high rotational speeds. Inspired by the microstructure of dragonfly wings, a novel thermally stable and ambient pressure curing poly(urea-imide) resin (PURI) with excellent tribological properties has been eco-friendly synthesis using bio-based greener solvents. Furthermore, The PURI composites enhanced with polyether ether ketone (PEEK) and Polytetrafluoroethylene (PTFE) blended fabrics demonstrate excellent mechanical, with tensile strengths exceeding 175 MPa.

View Article and Find Full Text PDF

Purpose: This study investigated the bond strength between short fiber-reinforced resin composite (SFC) and dentin following air abrasion with various types of abrasive particles.

Methods: A total of 120 human molars were prepared for a shear bond strength (SBS) test of the resin composite. The teeth were divided into 12 groups (n = 10/group) based on the air abrasion particle used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!