Organoids, Assembloids, and Novel Biotechnology: Steps Forward in Developmental and Disease-Related Neuroscience.

Neuroscientist

Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA.

Published: October 2021

In neuroscience research, the efforts to find the model through which we can mimic the in vivo microenvironment of a developing or defective brain have been everlasting. While model organisms are used for over a hundred years, many more methods have been introduced with immortalized or primary cell lines and later induced pluripotent stem cells and organoids to be some of these. As the use of organoids becomes more and more common by many laboratories in biology and neuroscience in particular, it is crucial to deeper understand the challenges and possible pitfalls of their application in research, many of which can be surpassed with the support of state-of-the art bioengineering solutions. In this review, after a brief chronicle of the path to the discovery of organoids, we focus on the latest approaches to study neuroscience related topics with organoids, such as the use of assembloids, CRISPR technology, patch-clamp and optogenetics techniques and discuss how modern 3-dimensional biomaterials, miniaturized bioreactors and microfluidic chips can help to overcome the disadvantages of their use.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1073858420960112DOI Listing

Publication Analysis

Top Keywords

organoids assembloids
8
organoids
5
assembloids novel
4
novel biotechnology
4
biotechnology steps
4
steps forward
4
forward developmental
4
developmental disease-related
4
neuroscience
4
disease-related neuroscience
4

Similar Publications

The creation of self-organizing liver organoids represents a significant, although modest, step toward addressing the ongoing organ shortage crisis in allogeneic liver transplantation. However, researchers have recognized that achieving a fully functional whole liver remains a distant goal, and the original ambition of organoid-based liver generation has been temporarily put on hold. Instead, liver organoids have revolutionized the field of hepatology, extending their influence into various domains of precision and molecular medicine.

View Article and Find Full Text PDF

[Research progress in animal embryo implantation and endometrial organoids].

Sheng Wu Gong Cheng Xue Bao

December 2024

Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.

Embryo implantation involves a complex interaction between the embryo and the endometrium of the mother, the study of which faces a variety of problems. The modeling of endometrial epithelial organoids and endometrial assembloids provides a new way to study the process of embryo implantation . This paper summarized the latest research progress in embryo implantation, the regulation mechanism of endometrial receptivity by estrogen- progesterone coordination and embryo-derived signals, the establishment of endometrial organoids, and the development and application of endometrial assembloids in the research on mother-embryo interaction, providing new strategies for studying the communication between embryo and maternal uterus during implantation.

View Article and Find Full Text PDF

Unlabelled: Neural crest cells (NCCs) are a multipotent embryonic cell population of ectodermal origin that extensively migrate during early development and contribute to the formation of multiple tissues. Cardiac NCCs play a critical role in heart development by orchestrating outflow tract septation, valve formation, aortic arch artery patterning, parasympathetic innervation, and maturation of the cardiac conduction system. Abnormal migration, proliferation, or differentiation of cardiac NCCs can lead to severe congenital cardiovascular malformations.

View Article and Find Full Text PDF

Spatially defined microenvironment for engineering organoids.

Biophys Rev (Melville)

December 2024

The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.

In the intricately defined spatial microenvironment, a single fertilized egg remarkably develops into a conserved and well-organized multicellular organism. This observation leads us to hypothesize that stem cells or other seed cell types have the potential to construct fully structured and functional tissues or organs, provided the spatial cues are appropriately configured. Current organoid technology, however, largely depends on spontaneous growth and self-organization, lacking systematic guided intervention.

View Article and Find Full Text PDF

Interactions between the developing heart and the embryonic immune system are essential for proper cardiac development and maintaining homeostasis, with disruptions linked to various diseases. While human pluripotent stem cell (hPSC)-derived organoids are valuable models for studying human organ function, they often lack critical tissue-resident immune cells. Here, we introduce an advanced human heart assembloid model, termed hHMA (human heart-macrophage assembloid), which fully integrates autologous cardiac tissue- resident macrophages (MPs) with pre-existing human heart organoids (hHOs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!