Although awareness that air pollution can damage vegetation dates back at least to the 1600s, the processes and mechanisms of damage were not rigorously studied until the late twentieth century. In the UK following the Industrial Revolution, urban air quality became very poor, with highly phytotoxic SO and NO concentrations, and remained that way until the mid-twentieth century. Since then both air quality, and our understanding of pollutants and their impacts, have greatly improved. Air pollutants remain a threat to natural and managed ecosystems. Air pollution imparts impacts through four major threats to vegetation are discussed through in a series of case studies. Gas-phase effects by the primary emissions of SO and NO are discussed in the context of impacts on lichens in urban areas. The effects of wet and dry deposited acidity from sulfur and nitrogen compounds are considered with a particular focus on forest decline. Ecosystem eutrophication by nitrogen deposition focuses on heathland decline in the Netherlands, and ground-level ozone at phytotoxic concentrations is discussed by considering impacts on semi-natural vegetation. We find that, although air is getting cleaner, there is much room for additional improvement, especially for the effects of eutrophication on managed and natural ecosystems. This article is part of a discussion meeting issue 'Air quality, past present and future'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584617 | PMC |
http://dx.doi.org/10.1098/rsta.2019.0317 | DOI Listing |
Cien Saude Colet
January 2025
Departamento de Química e Energia. Faculdade de Engenharia e Ciências, UNESP/Campus Guaratinguetá. Guaratinguetá SP Brasil.
This study evaluated the role of temperature and fine particulate matter in hospitalizations of children living in Cuiabá-MT, obtained from DATASUS, between 01/01/2016 and 12/31/2018. Daily concentrations of the pollutant fine particulate matter were estimated using the CAMS mathematical model, made available by CPTEC. Diagnoses of tracheitis and laryngitis, pneumonia, bronchitis, bronchiolitis and asthma were included.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Department of Environmental Health Engineering, Faculty of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
This study aimed to evaluate the concentrations of sulfur dioxide (SO2) and nitrogen oxides (NOX) around the Qom (a province in Iran) combined cycle power plant in relation to seasonal variations and fuel type from December 2014 to May 2015. Passive sampling was used in three monitoring sites around the power plant to assess noncarcinogenic health risks associated with exposure to SO2 and NOX. Results showed the higher concentrations of NOX and SO2 in winter than in spring.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Intelligent Transportation Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511455, China.
Integrating mobile monitoring data with street view images (SVIs) holds promise for predicting local air pollution. However, algorithms, sampling strategies, and image quality introduce extra errors due to a lack of reliable references that quantify their effects. To bridge this gap, we employed 314 taxis to monitor NO, NO, PM, and PM, and extracted features from ∼382,000 SVIs at multiple angles (0°, 90°, 180°, 270°) and buffer radii (100-500 m).
View Article and Find Full Text PDFHeliyon
January 2025
School of Architecture, Tianjin University, 300072, Tianjin, China.
Air pollution has become a major challenge to global urban sustainable development, necessitating urgent solutions. Meteorological variables are key determinants of air quality; however, research on their impact across different urban gradients remains limited, and their mechanisms are largely unexplored. This study investigates the dynamic effects of meteorological variables on air quality under varying levels of urbanization using Kaohsiung City, Taiwan, as a case study.
View Article and Find Full Text PDFIndian J Occup Environ Med
December 2024
Department of Electronics, Sri Venkateswara College, University of Delhi, New Delhi, India.
Introduction: Construction sites generate high levels of air pollution, contributing to more than 4% of particulate matter in the atmosphere. Literature indicates that on-site pollution is an important factor that contributes to lung impairments in construction workers. Chronic obstructive pulmonary disease (COPD) and acute respiratory distress syndrome (ADRS) are known to be exacerbated because of exposure to a variety of construction pollutants mainly particulate matter (PM10, PM2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!