To investigate the protective effect of spermine (Sp) on diabetic cardiomyopathy (DCM) and high glucose-induced cardiac fibroblasts (CFs), and to explore its mechanism. ①Animal experiments: 24 male Wistar rats were randomly divided into control group, type 1 diabetes group (TID) and spermine group (TID+Sp, each group n=8). TID rats were induced by streptozocin (STZ, 60 mg/kg), and TID+Sp rat were pretreated with spermine (Sp, 5 mg/(kg·d)) for 2 weeks before STZ injection. After 12 weeks of modeling, blood glucose, insulin levels, ejection fraction (EF) and shortening fraction (FS) were measured, and Masson staining and Sirius red staining were performed in the rat cardiac tissues. ②Cell experiments: primary CFs were extracted from newborn (1-3 d) Wistar rat hearts, and were randomly divided into control group, high-glucose group (HG) and HG+Sp group (n=6 per group). HG group was treated with 40 mmol/L glucose, and the HG+Sp group was pretreated with 5 μmol/L Sp for 30 min before HG treatment. The cell viability of CFs was detected by CCK8, the content of collagen in culture medium was analyzed by ELISA, and protein expressions of cell cycle related proteins (PCNA, CyclinD1 and P27) were detected by Western blot. Compared with control group, the blood glucose and collagen content were increased, and the insulin level and heart function were decreased in the T1D group. Meanwhile, HG induced an increasing of the cell viability, the collagen content in the medium and the expressions of PCNA and CyclinD1, while the expression of P27 was down-regulated. Spermine could reduce the above changes, manifested as improving the cardiac function, regulating the expression of cyclin and reducing the level of myocardial fibrosis. Spermine can alleviate myocardial fibrosis in diabetic cardiomyopathy, which mechanism is related to the regulation of cell cycle.

Download full-text PDF

Source
http://dx.doi.org/10.12047/j.cjap.5952.2020.043DOI Listing

Publication Analysis

Top Keywords

myocardial fibrosis
12
group
12
control group
12
high glucose-induced
8
diabetic cardiomyopathy
8
randomly divided
8
divided control
8
blood glucose
8
hg+sp group
8
cell viability
8

Similar Publications

Prognostic Value of Myocardial CT-ECV in Severe Aortic Stenosis Requiring Aortic Valve Replacement: A Systematic Review and Meta-analysis.

Eur Heart J Cardiovasc Imaging

January 2025

Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy.

Aim: Computed tomography (CT)-derived extracellular volume fraction (ECV) is a non-invasive method to quantify myocardial fibrosis. Evaluating CT-ECV during aortic valve replacement (AVR) planning CT in severe aortic stenosis (AS) may aid prognostic stratification. This meta-analysis evaluated the prognostic significance of CT-ECV in severe AS necessitating AVR.

View Article and Find Full Text PDF

Purpose Of Review: To summarize the available data on the use of immunosuppression therapies for the management of hot phases of disease and recurrent myocarditis in patients with desmoplakin cardiomyopathy (DSP-CMP).

Recent Findings: Occurrence of myocarditis episodes has been associated with worsening of outcomes in DSP-CMP. Multiple case reports and small case series have described potential benefit in using anti-inflammatory and immunosuppressive medications for the treatment of those episodes.

View Article and Find Full Text PDF

Background: Cardiac fibrosis plays a critical role in the progression of various forms of heart disease, significantly increasing the risk of sudden cardiac death. However, currently, there are no therapeutic strategies available to prevent the onset of cardiac fibrosis.

Methods And Results: Here, biomimetic ATP-responsive nanozymes based on genetically engineered cell membranes are adapted to specifically recognize activated cardiac fibroblasts (CFs) for the treatment of cardiac fibrosis.

View Article and Find Full Text PDF

Madecassoside mitigates acute myocardial infarction injury by activating the PKCB/SPARC signaling pathway.

Acta Pharmacol Sin

January 2025

Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.

The current treatments and drugs of myocardial infarction (MI) remain insufficient. In recent years, natural products have garnered significant attention for their potential in treating cardiovascular diseases due to their availability and lower toxicity. Saponins, in particular, showed promising effects for cardiac protection.

View Article and Find Full Text PDF

Low-density lipoprotein receptor-related protein 6 ameliorates cardiac hypertrophy by regulating CTSD/HSP90α signaling during pressure overload.

Acta Pharmacol Sin

January 2025

Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.

Pressure overload induces pathological cardiac remodeling, including cardiac hypertrophy and fibrosis, resulting in cardiac dysfunction or heart failure. Recently, we observed that the low-density lipoprotein receptor-related protein 6 (LRP6), has shown potential in enhancing cardiac function by mitigating cardiac fibrosis in a mouse model subjected to pressure overload. In this study, we investigated the role of LRP6 as a potential modulator of pressure overload-induced cardiac hypertrophy and elucidated the underlying molecular mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!