Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Streptococcus mutans is considered to be a major bacterium involved in dental caries, and the control of virulence mechanisms is fundamental to prevent disease. Probiotics present a promising preventive method; however, the use of probiotics requires its incorporation into delivery materials to facilitate oral colonization. Thus, we performed a comprehensive study examining preventive effects of Lactobacillus paracasei 28.4-enriched gellan hydrogel materials to inhibit S. mutans in planktonic and biofilm states, addressing its influence in the production of extracellular polysaccharides (EPS) and altered gene expression of several cariogenic virulence factors. L. paracasei 28.4, a strain isolated from the oral cavity of a caries-free individual, was incorporated in three gellan hydrogels (0.5%, 0.75%, and 1% w/v). The pretreatment with probiotic-gellan formulations provided a release of L. paracasei cells over 24 h that was sufficient to inhibit the planktonic growth of S. mutans, independent of the gellan concentrations and pH variations. This pretreatment also had inhibitory activity against S. mutans biofilms, exhibiting a reduction of 0.57 to 1.54 log in CFU/mL (p < 0.0001) and a decrease of 68.8 to 71.3% in total biomass (p < 0.0001) compared with the control group. These inhibitory effects were associated with the decreased production of EPS by 80% (p < 0.0001) and the downregulation of luxS, brpA, gbpB, and gtfB genes. The gellan formulation containing L. paracasei 28.4 exhibited probiotic effects for preventing S. mutans growth, biofilm formation, and production of cariogenic factors to suggest possible use in tooth decay prevention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12602-020-09712-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!