Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Optoelectronic properties of triphenylamine dyes arising from the embedded five-membered π-linkers CHX (X = O, NH, S, Se, Te) and varying anchoring groups, cyanoacrylic acid and hydantoin, in D-π-π-A model are examined. The reported properties for both, isolated dyes and dye@TiO complexes, are realized through density functional theory (DFT) and time-dependent DFT. The study reveals that chalcogen doping (X = S, Se, Te) enhances absorption and fluorescent emission spectra in the visible and NIR regions. The adsorption of the dyes on the TiO cluster has been simulated. Alteration of the UV-Vis spectra and electron density redistribution for the complexes from individual dyes are examined and analyzed. The binding energies relate to the nature of the heteroatoms X; the complexes dye@TiO with heavier heteroatoms Se and Te demonstrate stronger binding. Graphical abstract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-020-04542-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!