On January 20, 2020, the first patient with coronavirus disease 2019 (COVID-19) in the United States of America was diagnosed in Washington state, which subsequently experienced rapidly increasing numbers of COVID-19 cases, hospitalizations, and deaths. This placed the Seattle Blood and Marrow Transplant Program at Fred Hutchinson Cancer Research Center (Fred Hutch) in the national epicenter of this pandemic. Here, we summarize the experience gained during our rapid response to the COVID-19 pandemic. Our efforts were aimed at safely performing urgent and potentially life-saving stem cell transplants in the setting of pandemic-related stresses on healthcare resources and shelter-in-place public health measures. We describe the unique circumstances and challenges encountered, the current state of the program amidst evolving COVID-19 cases in our community, and the guiding principles for recovery. We also estimate the collateral impact of directing clinical resources toward COVID-19-related care on cancer patients in need of stem cell transplantation. Although our experience was influenced by specific regional and institutional factors, it may help inform how transplant programs respond to COVID-19 and future pandemics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519858PMC
http://dx.doi.org/10.1038/s41409-020-01068-xDOI Listing

Publication Analysis

Top Keywords

blood marrow
8
covid-19 pandemic
8
covid-19 cases
8
stem cell
8
covid-19
6
marrow transplantation
4
transplantation emerging
4
emerging covid-19
4
pandemic seattle
4
seattle approach
4

Similar Publications

Objective: The expanding field of hematopoietic cell transplantation (HCT) for non-malignant diseases, including those amenable to gene therapy or gene editing, faces challenges due to limited donor availability and the toxicity associated with cell collection methods. Umbilical cord blood (CB) represents a readily accessible source of hematopoietic stem and progenitor cells (HSPCs); however, the cell dose obtainable from a single cord blood unit is frequently insufficient. This limitation can be addressed by enhancing the potency of HSPCs, specifically their capacity to reconstitute hematopoiesis.

View Article and Find Full Text PDF

MSC-sEVs exacerbate senescence by transferring bisecting GlcNAcylated GPNMB.

Stem Cell Res Ther

January 2025

Key Laboratory of Resource Biology and Biotechnology in Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China.

Background: The senescence of bone marrow mesenchymal stem cells (BMMSCs) is increasingly recognized as a critical factor contributing to the pathophysiology of age-related diseases. Recent studies suggest that small extracellular vesicles (sEVs) derived from the serum of elderly individuals may play a pivotal role in promoting BMMSC senescence. Glycoprotein non-metastatic melanoma protein B (GPNMB), a type I transmembrane glycoprotein, is upregulated during cellular senescence and can regulate stem cell ageing.

View Article and Find Full Text PDF

The efficacy and safety of total marrow irradiation (TMI) plus a reduced dose of melphalan as autologous stem cell transplantation (ASCT) preconditioning for multiple myeloma (MM) patients were evaluated. The 11 patients with MM had a median age of 57 (range: 46-75) years; six of them were at standard risk and five of them were at high risk based on the Mayo Stratification of Myeloma and Risk-adapted Therapy (mSMART) standard risk factors. Before ASCT, three patients achieved stringent complete response (sCR), two patients achieved complete remission (CR), and the rest of the patients had either partial response (PR) or progressive disease.

View Article and Find Full Text PDF

Advanced Automated Model for Robust Bone Marrow Segmentation in Whole-body MRI.

Acad Radiol

January 2025

Division of Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany (F.B., M.G., H.P.S., S.D.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany (T.F.W., M.W.).

Rationale And Objectives: To establish an advanced automated bone marrow (BM) segmentation model on whole-body (WB-)MRI in monoclonal plasma cell disorders (MPCD), and to demonstrate its robust performance on multicenter datasets with severe myeloma-related pathologies.

Materials And Methods: The study cohort comprised multi-vendor, multi-protocol imaging data acquired with varying field strength across 8 different centers. In total, 210 WB-MRIs of 207 MPCD patients were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!