Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
βcysteine 93 residue plays a key role in oxygen (O)-linked conformational changes in the hemoglobin (Hb) molecule. This solvent accessible residue is also a target for binding of thiol reagents that can remotely alter O affinity, cooperativity, and Hb's sensitivity to changes in pH. In recent years, βCys93 was assigned a new physiological role in the transport of nitric oxide (NO) through a process of S-nitrosylation as red blood cells (RBCs) travel from lungs to tissues. βCys93 is readily and irreversibly oxidized in the presence of a mild oxidant to cysteic acid, which causes destabilization of Hb resulting in improper protein folding and the loss of heme. Under these oxidative conditions, ferryl heme (HbFe), a higher oxidation state of Hb is formed together with its protein radical (HbFe). This radical migrates to βCys93 and interacts with other "hotspot" amino acids that are highly susceptible to oxidative modifications. Oxidized βCys93 may therefore be used as a biomarker of oxidative stress, reflecting the deterioration of Hb within RBCs intended for transfusion or RBCs from patients with hemoglobinopathies. Site specific mutation of a redox active amino acid(s) to reduce the ferryl heme or direct chemical modifications that can shield βCys93 have been proposed to improve oxidative resistance of Hb and may offer a protective therapeutic strategy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41374-020-00492-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!