A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Zeptomolar-level one-pot simultaneous detection of multiple colorectal cancer microRNAs by cascade isothermal amplification. | LitMetric

Zeptomolar-level one-pot simultaneous detection of multiple colorectal cancer microRNAs by cascade isothermal amplification.

Biosens Bioelectron

State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China. Electronic address:

Published: December 2020

Multi-microRNA (miRNA) detection would greatly facilitate early diagnosis of colorectal cancer (CRC). Here a convenient cascade isothermal amplification approach incorporating a G-quadruplex molecular beacon (G4MB) was established for achieving one-pot detection of multiple CRC miRNAs (miRNA-21, miRNA-92a, miRNA-31); this strategy incorporated a Bsu DNA polymerase (Bsu pol)-induced strand-displacement reaction and a Lambda exonuclease (λexo)-aided recycling reaction. In the presence of target miRNA, the G-rich stem structure was opened and became available for hybridization with the primer to initiate synthesis of Bsu pol-catalyzed double-stranded DNA (dsDNA) that displaced the miRNA target and released it, allowing it to participate in subsequent amplification cycles. Meanwhile, the dsDNA was gradually digested into fragments by λexo from the 5' phosphorylated end, releasing the newly synthesized DNA strand for participation in subsequent cycles that led to amplification of the fluorescent signal. This approach provided a low limit of detection (LOD) of zeptomolar-level, 85.8 zM, 77.6 zM, 78.9 zM for miRNA-21, miRNA-92a, miRNA-31, respectively. It could distinguish the mismatched targets and achieved three miRNA targets detection run in parallel in one-pot within 2 h. Thus, this fast, simple, and convenient strategy holds great promise as a clinical application for the detection of multiple miRNAs in clinical CRC samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2020.112631DOI Listing

Publication Analysis

Top Keywords

detection multiple
12
colorectal cancer
8
cascade isothermal
8
isothermal amplification
8
mirna-21 mirna-92a
8
mirna-92a mirna-31
8
detection
6
zeptomolar-level one-pot
4
one-pot simultaneous
4
simultaneous detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!