Type 2 diabetes (T2D) substantially elevates the risk for heart failure, a major cause of death. In advanced T2D, energy metabolism in the heart is disrupted; glucose metabolism is decreased, fatty acid (FA) metabolism is enhanced to maintain ATP production, and cardiac function is impaired. This condition is termed diabetic cardiomyopathy (DCM). The exact cause of DCM is still unknown although altered metabolism is an important component. While type 2 diabetes is characterized by insulin resistance, the traditional antidiabetic agents that improve insulin stimulation or sensitivity only partially improve DCM-induced cardiac dysfunction. Recently, sodium-glucose transporter-2 (SGLT2) inhibitors have been identified as potential pharmacological agents to treat DCM. This review highlights the molecular mechanisms underlying cardiac energy metabolism in DCM, and the potential effects of SGLT2 inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770009 | PMC |
http://dx.doi.org/10.1016/j.coph.2020.08.015 | DOI Listing |
Plants (Basel)
December 2024
Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia.
Diabetic cardiomyopathy is a significant and severe complication of diabetes that affects a large portion of the global population, with its prevalence continuing to rise. Secondary metabolites, including quercetin, have shown promising effects in mitigating the progression of diabetic cardiomyopathy by targeting multiple pathological mechanisms, including impaired insulin signaling, glucotoxicity, lipotoxicity, oxidative stress, inflammation, fibrosis, apoptosis, autophagy, mitochondrial dysfunction, cardiac stiffness, and disrupted calcium handling. Addressing these mechanisms is crucial to prevent left ventricular diastolic and systolic dysfunction in advanced stages of diabetic heart disease.
View Article and Find Full Text PDFDiabetol Metab Syndr
January 2025
Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
Background And Aims: Type 2 diabetes mellitus (T2DM) is usually complicated by cardiovascular diseases, hyperglycemia, and obesity, which worsen the outcome for the patient. Since recent evidence underlines the epigenetic role of glucagon-like peptide-1 receptor agonists (GLP-1RAs) in the management of these comorbidities, this study compared the effects of these agents, namely liraglutide, semaglutide, dulaglutide, and exenatide, on miRNA regulation in the management of T2DM.
Results: GLP-1RAs modify the expression of miRNAs involved in endothelial function, sugar metabolism, and adipogenesis, including but not limited to miR-27b, miR-130a, and miR-210.
Int J Biol Macromol
January 2025
Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China. Electronic address:
Dietary polysaccharides, recognised as significant natural bioactive compounds, have demonstrated promising potential for the prevention and treatment of cardiovascular disease (CVD). This review provides an overview of the biological properties and classification of polysaccharides, with particular emphasis on their extraction and purification methods. The paper then explores the diverse mechanisms by which polysaccharides exert their effects in CVD, including their antioxidant activity, protection against ischemia-reperfusion injury, anti-apoptotic properties, protection against diabetic cardiomyopathy, anticoagulant and antithrombotic effects, prevention of ventricular remodeling, and protection against vascular injury.
View Article and Find Full Text PDFJ Cardiovasc Electrophysiol
January 2025
Division of Cardiac Electrophysiology, Virginia Commonwealth University, Richmond, Virginia, USA.
Atrial fibrillation (AF) is the most common cause of arrhythmia-induced cardiomyopathy. Effective management strategies include medical therapy for rate and rhythm control, catheter ablation (CA), and goal-directed medical therapy. Sodium-glucose co-transporter 2 inhibitors (SGLT2i), a novel class of antidiabetic drugs, have shown a promising impact in reducing cardiovascular events in diabetic and nondiabetic heart failure (HF) patients.
View Article and Find Full Text PDFJ Chin Med Assoc
January 2025
Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
Tadalafil is a selective phosphodiesterase type 5 (PDE5) inhibitor commonly used for the treatment of erectile dysfunction and benign prostatic hyperplasia. Its mechanism of action involves the inhibition of PDE5, leading to increased levels of nitric oxide and cyclic guanosine monophosphate in the corpus cavernosum, which facilitates smooth muscle relaxation. This article reviews studies using tadalafil in the treatment of cardiovascular diseases and emphasizes its potential advantages in conditions such as pulmonary arterial hypertension, atherosclerosis, coronary artery disease, myocardial infarction, heart failure, stroke, diabetic ulcers, and cardiomyopathy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!