Background: We aimed to demonstrate the biochemical characteristics of vitamin B6-dependent epilepsy, with a particular focus on pyridoxal 5'-phosphate and pyridoxal in the cerebrospinal fluid.
Methods: Using our laboratory database, we identified patients with vitamin B6-dependent epilepsy and extracted their data on the concentrations of pyridoxal 5'-phosphate, pyridoxal, pipecolic acid, α-aminoadipic semialdehyde, and monoamine neurotransmitters. We compared the biochemical characteristics of these patients with those of other epilepsy patients with low pyridoxal 5'-phosphate concentrations.
Results: We identified seven patients with pyridoxine-dependent epilepsy caused by an ALDH7A1 gene abnormality, two patients with pyridoxal 5'-phosphate homeostasis protein deficiency, and 28 patients with other epilepsies with low cerebrospinal fluid pyridoxal 5'-phosphate concentrations. Cerebrospinal fluid pyridoxal and pyridoxal 5'-phosphate concentrations were low in patients with vitamin B6-dependent epilepsy but cerebrospinal fluid pyridoxal concentrations were not reduced in most patients with other epilepsies with low cerebrospinal fluid pyridoxal 5'-phosphate concentrations. Increase in 3-O-methyldopa and 5-hydroxytryptophan was demonstrated in some patients with vitamin B6-dependent epilepsy, suggestive of pyridoxal 5'-phosphate deficiency in the brain.
Conclusions: Low cerebrospinal fluid pyridoxal concentrations may be a better indicator of pyridoxal 5'-phosphate deficiency in the brain in vitamin B6-dependent epilepsy than low cerebrospinal fluid pyridoxal 5'-phosphate concentrations. This finding is especially helpful in individuals with suspected pyridoxal 5'-phosphate homeostasis protein deficiency, which does not have known biomarkers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pediatrneurol.2020.08.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!