Effectiveness of terracing techniques for controlling soil erosion by water in Rwanda.

J Environ Manage

Ghent University, Faculty of Bioscience Engineering, Department of Environment, Coupure Links 653, 9000, Gent, Belgium. Electronic address:

Published: January 2021

Despite long-standing efforts in terracing, limited field-based evidence of its effectiveness as implemented within rural farming systems of humid tropical regions, such as Rwanda, is available. This study aimed to reveal regional differences in effectiveness of two widely used terracing techniques. Traditional slope farming (NP) was compared to bench (BT) and farmers' based progressive terraces (PT) in terms of runoff, soil losses, and topsoil fertility in two contrasting agro-ecological zones, the Eastern Plateau (Murehe) and Buberuka Highlands (Tangata). During four consecutive rainy seasons, event-based data were collected using erosion plots (5 m width x 22.2 m length). Effectiveness indices of both terracing systems, as well as (R)USLE P-factor values, were calculated. The annual average soil losses under NP ranged from 4.71 ± 5.02 ton ha to 46.01 ± 7.28 ton ha in Murehe (14% slope gradient) and Tangata (43% slope gradient), respectively. Bench terracing clearly outperformed the farmer-based progressive terrace at both locations, leading to negligible soil losses. In terms of runoff reduction, an effectiveness of 70 and 85% respectively, was observed at Murehe and Tangata. The effectiveness of PT reached 52% for runoff control and 93% for soil loss control at Tangata, thereby confirming its huge potential as erosion control measure, even in mountainous areas. In the hilly landscape of Murehe, the runoff generated by PT - in some years - can exceed that under traditional farming, while the measure reduced soil losses by half on average. Associated USLE P-factors varied between seasons with an annual average values of 0.001-0.02 for BT, and 0.07 to 0.55 for PT at Tangata and Murehe, respectively. These variations in performance by site and terracing system also resulted in differences in topsoil chemical fertility, with BT generally outperforming both PT and NP at Tangata. At Murehe, PT showed a significantly lower chemical fertility compared to BT and NP. Poor quality risers explained the overall lower performance of PT at Murehe. The study thus confirmed the huge potential of (bench) terraces to sustainably reduce soil erosion rates when established within an integrated approach, paying attention to correct installation and fertility-supporting agronomic practices. More attention should be given to riser installation (e.g. distance) and maintenance of PT. Adoption of these erosion control measures can be recommended to similar agro-ecological zones for sustainably protecting the lands while mitigating or adapting the effects of climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.111369DOI Listing

Publication Analysis

Top Keywords

soil losses
16
effectiveness terracing
8
terracing techniques
8
soil erosion
8
terms runoff
8
agro-ecological zones
8
annual average
8
slope gradient
8
huge potential
8
erosion control
8

Similar Publications

Background: Fungal plant diseases cause major crop losses. Phytopathogenic fungi's ability to evolve resistance to fungicides, alongside ongoing prohibition of such agents by the European Commission because of their pronounced adverse effects on human health and the environment, make their control a challenge. Moreover, the development of less perilous fungicides is a complex task.

View Article and Find Full Text PDF

Elemental cryo-imaging reveals SOS1-dependent vacuolar sodium accumulation.

Nature

January 2025

Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Increasing soil salinity causes significant crop losses globally; therefore, understanding plant responses to salt (sodium) stress is of high importance. Plants avoid sodium toxicity through subcellular compartmentation by intricate processes involving a high level of elemental interdependence. Current technologies to visualize sodium, in particular, together with other elements, are either indirect or lack in resolution.

View Article and Find Full Text PDF

Oviposition-deterrent activity of p-methyl benzaldehyde and 2-hydroxy-5-methoxybenzaldehyde from the extract of Periplocae cortex for the control of Spodoptera frugiperda.

Pest Manag Sci

January 2025

Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China.

Background: The invasion of Spodoptera frugiperda into China has caused serious losses to the food industry and has developed varying degrees of resistance to various chemical pesticides. Developing new plant-based pesticides is of great significance for the sustainable management of S. frugiperda.

View Article and Find Full Text PDF

Increased but not pristine soil organic carbon stocks in restored ecosystems.

Nat Commun

January 2025

Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.

Ecosystem restoration can contribute to climate change mitigation, as recovering ecosystems sequester atmospheric CO in biomass and soils. It is, however, unclear how much soil organic carbon (SOC) stocks recover across different restored ecosystems. Here, we show SOC recovery in different contexts globally by consolidating 41 meta-analyses into a second-order meta-analysis.

View Article and Find Full Text PDF

Changes in winter precipitation accompanying emerging climate trends lead to a major carbon-climate feedback from Arctic tundra. However, the mechanisms driving the direction, magnitude, and form (CO and CH) of C fluxes and derived climate forcing (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!