Introduction of cavities and channels into 3D bioprinted constructs is a prerequisite for recreating physiological tissue architectures and integrating vasculature. Projection-based stereolithography inherently offers high printing speed with high spatial resolution, but so far has been incapable of fabricating complex native tissue architectures with cellular and biomaterial diversity. The use of sacrificial photoinks, i.e. photopolymerisable biomaterials that can be removed after printing, theoretically allows for the creation of any construct geometry via a multi-material printing process. However, the realisation of this strategy has been challenging because of difficult technical implementation and a lack of performant biomaterials. In this work, we use our projection-based, multi-material stereolithographic bioprinter and an enzymatically degradable sacrificial photoink to overcome the current hurdles. Multiple, hyaluronic acid-based photoinks were screened for printability, mechanical properties and digestibility through hyaluronidase. A formulation meeting all major requirements, i.e. desirable printing properties, generation of sufficiently strong hydrogels, as well as fast digestion rate, was identified. Biocompatibility of the material system was confirmed by embedding of human umbilical vein endothelial cells with followed enzymatic release. As a proof-of-concept, we bioprinted vascular models containing perfusable, endothelial cell-lined channels that remained stable for 28 days in culture. Our work establishes digestible sacrificial biomaterials as a new material strategy for 3D bioprinting of complex tissue models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2020.09.033 | DOI Listing |
Int J Biol Macromol
January 2025
Key Laboratory of Chem-Biosensing of Anhui Province, Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, China. Electronic address:
Adsorption and biodegradation are two important means to remove the pollutants from the environment, but how to combine them and improve the catalytic performance and stability of free enzyme are facing great challenges. Herein, lipase from Candida rugosa (CRL) was immobilized into bimetallic ZnCo-MOF by biomineralization, which not only significantly improved the catalytic activity and stability of CRL but also endowed it with excellent reusability. Furthermore, CRL@ZnCo-MOF established a synergetic system of combined adsorption and enzymatic degradation for the sustainable removal of dibutyl phthalate (DBP) in actual water environment.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K.
The "Protein synthesis Using Recombinant Elements" ("PURE") system is a minimal biochemical system capable of carrying out cell-free protein synthesis using defined enzymatic components. This study extends PURE by integrating an ATP regeneration system based on pyruvate oxidase, acetate kinase, and catalase. The new pathway generates acetyl phosphate from pyruvate, phosphate, and oxygen, which is used to rephosphorylate ATP .
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany.
Tattooing is a popular form of body art that has evolved from ancient times into being part of modern society. The understanding of biotransformation processes of coloring tattoo pigments in human skin is limited although skin reactions to tattoos with unknown culprits occur. Electrochemistry coupled to mass spectrometry (EC-MS) has widely been used as a tool for a purely instrumental approach to simulating the enzymatic biotransformation of xenobiotics.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Doping Control Laboratory, Department of Diagnostic Sciences, Ghent University, Block B, Ottergemsesteenweg 460, BE-9000, Ghent, Belgium.
Dried urine spots have recently been proposed as an alternative matrix in the anti-doping field. Drying urine may open the opportunity to limit microbial and thermal degradation of the prohibited substances during transportation to the anti-doping laboratories without the need for refrigeration or freezing. In this study, a multi-targeted initial testing procedure was developed for the determination of 237 prohibited drugs/metabolites from 11 different classes in dried urine spots.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Basic Medicine, Qingdao University, Qingdao 266071, China. Electronic address:
Fructose-1,6-bisphosphatase 1 (FBP1) is a key gluconeogenic enzyme that plays complex and context-dependent roles in cancer biology. This review comprehensively examines FBP1's dual functions as both a tumor suppressor and an oncogene across various cancer types. In many cancers, such as hepatocellular carcinoma, clear cell renal cell carcinoma, and lung cancer, downregulation of FBP1 contributes to tumor progression through metabolic reprogramming, promoting glycolysis, and altering the tumor microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!