Zinn's zonule.

Prog Retin Eye Res

Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8096, St. Louis, MO 63110, USA. Electronic address:

Published: May 2021

The Zonule of Zinn, or ciliary zonule, is the elaborate system of extracellular fibers that centers the lens in the eye. In humans, the fibers transmit forces that flatten the lens during the process of disaccommodation, thereby bringing distant objects into focus. Zonular fibers are composed almost entirely of 10-12 nm-wide microfibrils, of which polymerized fibrillin is the most abundant component. The thickest fibers have a fascicular organization, where hundreds or thousands of microfibrils are gathered into micrometer-wide bundles. Many such bundles are aggregated to form a fiber. Dozens of proteins comprise the zonule. Most are derived from cells of the non-pigmented ciliary epithelium in the pars plana region, although some are probably contributed by the lens and perhaps other tissues of the anterior segment. Zonular fibers are viscoelastic cables but their component microfibrils are rather stiff structures. Thus, the elastic properties of the fibers likely stem from lateral interactions between microfibrils. Rupture of zonular fibers and subsequent lens dislocation (ectopia lentis) can result from blunt force trauma or be a sequela of other eye diseases, notably exfoliation syndrome. Ectopia lentis is also a feature of syndromic conditions caused typically by mutations in microfibril-associated genes. The resulting ocular phenotypes raise the possibility that the zonule regulates lens size and shape, globe size, and even corneal topology, in addition to its well-recognized role in accommodation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139560PMC
http://dx.doi.org/10.1016/j.preteyeres.2020.100902DOI Listing

Publication Analysis

Top Keywords

zonular fibers
12
ectopia lentis
8
fibers
7
lens
5
zinn's zonule
4
zonule
4
zonule zonule
4
zonule zinn
4
zinn ciliary
4
ciliary zonule
4

Similar Publications

Influence of lens thickness on the accommodative range in healthy eyes.

J Optom

January 2025

Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; Visual Optics Lab Antwerp (VOLANTIS), Faculty of Medicine and Health Sciences, Antwerp University, Wilrijk, Belgium. Electronic address:

Background: The maximum accommodative range is a useful indication of visual function. It decreases with age, but the exact cause of this decrease is not fully understood. It is associated with the increasing rigidity of the lens and changes to the lens shape, as well as the geometry of the zonular attachments.

View Article and Find Full Text PDF

The zonular fibres are formed primarily of fibrillin-1, a large extracellular matrix (ECM) glycoprotein, and also contain other constituents such as LTBP-2, ADAMTSL6, MFAP-2 and EMILIN-1, amongst others. They are critical for sight, holding the crystalline lens in place and being necessary for accommodation. Zonulopathies refer to conditions in which there is a lack or disruption of zonular support to the lens and may clinically be manifested as ectopia lens (EL)-defined as subluxation of the lens outside of the pupillary plane or frank displacement (dislocation) into the vitreous or anterior segment.

View Article and Find Full Text PDF

Background: The ciliary muscle is known to play a part in presbyopia, but the mechanism has not received a comprehensive review, which this study aims to achieve. We examined relevant articles published from 1975 through 2022 that explored various properties of the muscle and related tissues in humans and rhesus monkeys. These properties include geometry, elasticity, rigidity, and composition, and were studied using a range of imaging technologies, computer models, and surgical methods.

View Article and Find Full Text PDF

Reprogramming of iPSCs to NPCEC-like cells by biomimetic scaffolds for zonular fiber reconstruction.

Bioact Mater

March 2025

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.

Ectopia lentis (EL), characterised by impaired zonular fibers originating from non-pigmented ciliary epithelial cells (NPCEC), presents formidable surgical complexities and potential risks of visual impairment. Cataract surgery is the only treatment method for EL, but it leads to the loss of accommodative power of the lens post-operatively. Furthermore, the challenge of repairing zonular ligaments remains a significant global issue.

View Article and Find Full Text PDF

Purpose: With the growing popularity of badminton worldwide, the incidence of badminton-related ocular injuries is expected to rise. The high velocity of shuttlecocks renders ocular traumas particularly devastating, especially with the possibility of permanent vision loss. This study investigated the mechanism behind ocular complications through simulation analyses of mechanical stresses and pressures upon shuttlecock impact.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!