Seven of the 57 human cytochrome P450 (P450) enzymes are mitochondrial and carry out important reactions with steroids and vitamins A and D. These seven P450s utilize an electron transport chain that includes NADPH, NADPH-adrenodoxin reductase (AdR), and adrenodoxin (Adx) instead of the diflavin NADPH-P450 reductase (POR) used by the other P450s in the endoplasmic reticulum. Although numerous studies have been published involving mitochondrial P450 systems, the experimental conditions vary considerably. We compared human Adx and bovine Adx, a commonly used component, and found very similar catalytic activities in reactions catalyzed by human P450s 11B2, 27A1, and 27C1. Binding constants of 6-200 nM were estimated for Adx binding to these P450s using microscale thermophoresis. All P450 catalytic reactions were saturated at 10 μM Adx, and higher concentrations were not inhibitory up to at least 50 μM. Collectively these studies demonstrate the tight binding of Adx (both human and bovine) to AdR and to several mitochondrial P450s and provide guidance for optimization of Adx-dependent P450 reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863566PMC
http://dx.doi.org/10.1016/j.abb.2020.108596DOI Listing

Publication Analysis

Top Keywords

cytochrome p450
8
p450 enzymes
8
p450
6
adx
6
human
5
p450s
5
functional interactions
4
interactions adrenodoxin
4
adrenodoxin human
4
mitochondrial
4

Similar Publications

Meiosis and retinoic acid in the mouse fetal gonads: An unforeseen twist.

Curr Top Dev Biol

January 2025

Université de Strasbourg, IGBMC UMR 7104, Illkirch, France; CNRS, UMR 7104, Illkirch, France; Inserm, UMR-S 1258, Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. Electronic address:

In mammals, differentiation of germ cells is crucial for sexual reproduction, involving complex signaling pathways and environmental cues defined by the somatic cells of the gonads. This review examines the long-standing model positing that all-trans retinoic acid (ATRA) acts as a meiosis-inducing substance (MIS) in the fetal ovary by inducing expression of STRA8 in female germ cells, while CYP26B1 serves as a meiosis-preventing substance (MPS) in the fetal testis by degrading ATRA and preventing STRA8 expression in the male germ cells until postnatal development. Recent genetic studies in the mouse challenge this paradigm, revealing that meiosis initiation in female germ cells can occur independently of ATRA signaling, with key roles played by other intrinsic factors like DAZL and DMRT1, and extrinsic signals such as BMPs and vitamin C.

View Article and Find Full Text PDF

The active metabolite of vitamin A, all-trans-retinoic acid (atRA), is critical for maintenance of many cellular processes. Although the enzymes that can synthesize and clear atRA in mammals have been identified, their tissue and cell-type specific roles are still not fully established. Based on the plasma protein binding, tissue distribution and lipophilicity of atRA, atRA partitions extensively to lipid membranes and other neutral lipids in cells.

View Article and Find Full Text PDF

In vitro comparative analysis of metabolic capabilities and inhibitory profiles of selected CYP2D6 alleles on tramadol metabolism.

Clin Transl Sci

February 2025

Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, Florida, USA.

Tramadol, the 41st most prescribed drug in the United States in 2021 is a prodrug activated by CYP2D6, which is highly polymorphic. Previous studies showed enzyme-inhibitor affinity varied between different CYP2D6 allelic variants with dextromethorphan and atomoxetine metabolism. However, no study has compared tramadol metabolism in different CYP2D6 alleles with different CYP2D6 inhibitors.

View Article and Find Full Text PDF

Scopoletin alleviates acetaminophen-induced hepatotoxicity through modulation of NLRP3 inflammasome activation and Nrf2/HMGB1/TLR4/NF-κB signaling pathway.

Int Immunopharmacol

January 2025

Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China. Electronic address:

Scopoleitin (SP), a bioactive compound from many edible plants and fruits, exerts a wide range of biological activities, however the role and mechanism of SP in acetaminophen (APAP)-induced hepatotoxicity remains unclear. In this study, we verified the protective effect of SP on APAP-induced liver injury (AILI) hepatotoxicity and explore the underlying molecular mechanisms. Here, we showed that SP alleviated AILI by reducing serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, hepatic histopathological damage, inflammation, and liver cell apoptosis.

View Article and Find Full Text PDF

Deep Learning of CYP450 Binding of Small Molecules by Quantum Information.

J Chem Inf Model

January 2025

Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States.

Drug-drug interaction can lead to diminished therapeutic effects or increased toxicity, posing significant risks, especially in polypharmacy, and cytochrome P450 plays an indispensable role in this interaction. Cytochrome P450, responsible for the metabolism and detoxification of most drugs, metabolizes about 90% of Food and Drug Administration-approved drugs, making early detection of potential drug-drug interactions. Over the years, in-silico modeling has become a valuable tool for predicting drug-drug interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!