To evaluate whether the development of β-cypermethrin resistance in Blattella germanica (L.) (Blattaria: Blattellidae) affects the fecundity fitness of this insect and to determine the underlying mechanism, we compared fecundity differences between β-cypermethrin-resistant (R) and sensitive (S) strains of B. germanica, observed the physiological structural changes of ovaries from an visual perspective, and analyzed differences in the ovarian proteome using proteomic methods. The results showed that, compared with the S strain of B. germanica, the R strain of B. germanica had a significantly higher ootheca shedding rate, a significantly lower number of hatched and surviving nymphs, a significantly higher female proportion in the population and defective ovarian development. Ovarian proteomic analysis showed a total of 64 differentially expressed proteins in the R strain, including 18 upregulated proteins and 46 downregulated proteins. Twenty-four significantly differentially expressed proteins were further studied, and 14 were successfully identified, which were mainly classified into the following categories: immunity-related proteins, development-related proteins, structural proteins, energy metabolism-related proteins and proteins with unknown functions. The differential expression of these proteins reflects the overall changes in cell structure and metabolism associated with β-cypermethrin resistance and explains the possible molecular mechanism of fecundity fitness disadvantages. In summary, β-cypermethrin resistance can cause fecundity fitness disadvantages in B. germanica. The metabolic deviations needed to overcome the adverse effects of insecticides may result in an energy exchange that affects energy allocation and, ultimately, the basic needs of the insect. The fitness cost due to insecticide resistance is critical to the delay of the evolution of resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pestbp.2020.104682 | DOI Listing |
Mol Biol Rep
January 2025
Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
Background: Litter size in mice is an important fitness and economic feature that is controlled by several genes and influenced by non-genetic factors too. High positive selection pressure in each generation for Litter size at birth (LSB), resulted in the development of high and low prolific lines of inbred Swiss albino mice (SAM). Despite uniform management conditions, these lines showed variability in LSB across the generation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China. Electronic address:
The β-tubulin gene is essential for reproductive development, especially for male fertility, in different insects including Bombyx mori and Drosophila melanogaster. Targeting reproductive genes such as β-tubulin offers a promising approach to pest control that is more sustainable than chemical pesticides. However, there is limited research on the functional role of β-tubulin in Plutella xylostella, a highly damaging pest of vegetable crops.
View Article and Find Full Text PDFArch Insect Biochem Physiol
January 2025
Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China.
Cyclaniliprole, a type of the third-generation anthranilic diamide insecticide, was mainly used for management of various pests. Myzus persicae (Hemiptera: Aphididae), known as the peach-potato aphid, is an economically essential pest with worldwide distribution. However, the risk assessment of cyclaniliprole in M.
View Article and Find Full Text PDFInsects
December 2024
Department of Zoology, Faculty of Science, Eastern University, Chenkalady 30350, Sri Lanka.
The melon fly, , poses a severe threat to the country's agricultural productivity, particularly in the cultivation of cucurbitaceous crops. This study was conducted to determine the ideal irradiation dose to be used to set up a Sterile Insect Technique (SIT)-based strategy to control outbreaks in Sri Lanka. A colony was established and maintained under standard laboratory conditions.
View Article and Find Full Text PDFInsects
December 2024
Department of Agriculture, Food and Environments, University of Catania, I-95123 Catania, Italy.
The cotton mealybug, Tinsley (Hemiptera: Pseudococcidae), is an invasive polyphagous pest that has been reported in several tomato-producing Mediterranean countries. However, information regarding the impact of temperature variations on its potential damage and population dynamics on this crop is limited. The effect of four temperatures (20 ± 1 °C, 25 ± 1 °C, 30 ± 1 °C and 35 ± 1 °C) on the development, reproduction, and population growth parameters of on tomatoes under controlled laboratory conditions was investigated using age-stage two-sex life tables.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!