A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Foliar absorption coefficient derived from reflectance spectra: A gauge of the efficiency of in situ light-capture by different pigment groups. | LitMetric

Foliar absorption coefficient derived from reflectance spectra: A gauge of the efficiency of in situ light-capture by different pigment groups.

J Plant Physiol

Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, Lansing, MI, 48823, USA; Geography Department, University of North Carolina, Chapel Hill, NC, 27599, USA.

Published: November 2020

The absorption of Photosynthetically Active Radiation (PAR) by different foliar pigments defines the amount of energy available for photosynthesis and also the need for photoprotection. Both characteristics reveal essential information about productivity, development, and stress acclimation of plants. Here we present an approach for the estimation of the efficiency by three foliar pigment groups (chlorophylls, carotenoids, and anthocyanins) at capturing light, via the absorption coefficient derived from leaf reflectance spectra. The absorption coefficient (and hence light capture efficiency) of the pigment is quantitatively related to the ratio of light absorbed by each pigment group over the total amount of light absorbed by the leaf. The proposed approach allows discerning the contribution of pigment groups to the overall light absorption, despite the strong interference by other pigments with overlapping absorption spectra. For photosynthetic pigments, like chlorophylls, this is indicative of the energy captured for photosynthesis and hence of potential plant productivity. For photoprotective pigments, like anthocyanins or secondary carotenoids, it gives information about the spectral ranges where their optical screening works best and their screening capacity. In addition, the approach allows the selection of optimal spectral bands where different pigments operate. Such information improves our understanding of the phenological, physiological and photosynthetic dynamics of plants over space and through time, useful for developing better monitoring and management strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2020.153277DOI Listing

Publication Analysis

Top Keywords

absorption coefficient
12
pigment groups
12
coefficient derived
8
reflectance spectra
8
light absorption
8
light absorbed
8
approach allows
8
pigment
5
absorption
5
pigments
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!