Self-Learning Molecular Design for High Lithium-Ion Conductive Ionic Liquids using Maze Game.

J Chem Inf Model

Toyota Central R&D Laboratories., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan.

Published: October 2020

A self-learning artificial intelligence system for an autonomous molecular search was recently utilized in place of laborious material development processes by humans. In this approach, because the evaluation of unsuitable or unrealistic candidates considerably decreases the search efficiency, prior knowledge of the chemistry and engineering requirements should be embedded into the molecular-generative algorithm. However, when using naive rule-based restrictions, one must implement the complex rule logic into the code each time, depending on the materials and potential applications. Herein, we propose a molecular-generative method using a maze game to control the allowable constituent fragments of molecules, which improves the flexibility and consistency to implement the rules. We performed an autonomous search for optimized cation structures of high Li-ion conductive ionic liquids evaluated by molecular dynamics simulations, in its practically reasonable scope defined by the maze game. From the search, we discover that acyl ammonium cations are favorable for high Li-ion conductivity because of the high association between the cations and Li ions. These results broaden our existing insight owing to the ability to explore beyond our practical experiences.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.0c00692DOI Listing

Publication Analysis

Top Keywords

maze game
12
conductive ionic
8
ionic liquids
8
high li-ion
8
self-learning molecular
4
molecular design
4
high
4
design high
4
high lithium-ion
4
lithium-ion conductive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!