Boron neutron capture therapy (BNCT) requires pharmaceutical innovations and molecular-based evidence of effectiveness to become a standard cancer therapeutic in the future. Recently, in Japan, 4-borono-L-phenylalanine (BPA) was approved as a boron agent for BNCT against head and neck (H&N) cancers. H&N cancer appears to be a suitable target for BPA-BNCT, because the expression levels of L-type amino acid transporter 1 (LAT1), one of the amino acid transporters responsible for BPA uptake, are elevated in most cases of H&N cancer. However, in other types of cancer including malignant brain tumors, LAT1 is not always highly expressed. To expand the possibility of BNCT for these cases, we previously developed poly-arginine peptide (polyR)-conjugated mercaptoundecahydrododecaborate (BSH). PolyR confers the cell membrane permeability and tumor selectivity of BSH. However, the molecular determinants for the properties are not fully understood. In this present study, we have identified the cluster of differentiation 44 (CD44) protein and translational machinery proteins as a major cell surface target and intracellular targets of BSH-polyR, respectively. CD44, also known as a stem cell-associated maker in various types of cancer, is required for the cellular uptake of polyR-conjugated molecules. We showed that BSH-polyR was predominantly delivered to a CD44 cell population of cancer cells. Once delivered, BSH-polyR interacted with the translational machinery components, including the initiation factors, termination factors, and poly(A)-biding protein (PABP). As a proof of principle, we performed BSH-polyR-based BNCT against glioma stem-like cells and revealed that BSH-polyR successfully induced BNCT-dependent cell death specifically in CD44 cells. Bioinformatics analysis indicated that BSH-polyR would be suitable for certain types of malignant tumors. Our results shed light on the biochemical properties of BSH-polyR, which may further contribute to the therapeutic optimization of BSH-BNCT in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598271 | PMC |
http://dx.doi.org/10.3390/cells9102149 | DOI Listing |
Apoptosis
January 2025
Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.
Tangerine peel is a traditional Chinese herb and has been widely applied in foods and medicine for its multiple pharmacological effects. Erythropoietin receptor (EPOR), a member of the cytokine receptor family, is widely expressed in multiple tissues in especial kidney and plays protective effects in adverse physiological and pathological conditions. We hypothesized that it might be EPOR agonists existing in Tangerine peel bring such renal benefits.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden.
ITK-SYK and TEL-SYK (also known as ETV6-SYK) are human tumor-causing chimeric proteins containing the kinase region of SYK, and the membrane-targeting, N-terminal, PH-TH domain-doublet of ITK or the dimerizing SAM-PNT domain of TEL, respectively. ITK-SYK causes peripheral T cell lymphoma, while TEL-SYK was reported in myelodysplastic syndrome. BTK is a kinase highly related to ITK and to further delineate the role of the N-terminus, we generated the corresponding fusion-kinase BTK-SYK.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics.
View Article and Find Full Text PDFJ Hepatol
January 2025
Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom. Electronic address:
Background & Aims: Hepatocyte transplantation has shown promise for genetic diseases of the hepatocytes but to date has shown limited efficacy for non-genetic forms of severe liver injury. Limited cell engraftment and poor function of donor hepatocytes in recipient livers impacts the clinical utility of hepatocyte cell therapy. The mechanisms underpinning this are poorly understood.
View Article and Find Full Text PDFImmunity
December 2024
Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Erasmus MC, Department of Genetics, Rotterdam University, Rotterdam, the Netherlands. Electronic address:
Prolonged exposure to interferon-gamma (IFNγ) and the associated increased expression of the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) create an intracellular shortage of tryptophan in the cancer cells, which stimulates ribosomal frameshifting and tryptophan to phenylalanine (W>F) codon reassignments during protein synthesis. Here, we investigated whether such neoepitopes can be useful targets of adoptive T cell therapy. Immunopeptidomic analyses uncovered hundreds of W>F neoepitopes mainly presented by the HLA-A24:02 allele.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!