Superhydrophobic conjugated microporous polymers grafted silica microspheres for liquid chromatographic separation.

J Chromatogr A

College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China. Electronic address:

Published: November 2020

Vigorously developing new high performance liquid chromatography (HPLC) stationary phases to meet the versatile separation requirements is still an important issue in the field of analytical chemistry. Conjugated microporous polymers (CMPs) are a new type of three-dimensional network porous material with high specific surface area, good chemical stability and superhydrophobicity. Herein, we firstly report the synthesis and applications of CMPs@SiO material for HPLC stationary phase. The CMPs@SiO material can be in situ fabricated via Sonogashira coupling of 1,3,5-triethynylbenzene and 1,4-diiodobenzene on the surface of spherical silica. The morphology and physicochemical properties of the synthesized stationary phase material were investigated by a series of characterization methods. Due to the superhydrophobic nature of the CMPs@SiO material, the packed CMPs@SiO HPLC column displays ultrastrong chromatographic retention and can be used for separation of both hydrophobic and hydrophilic compounds with good selectivity. Significantly, CMPs@SiO column can be performed for separation with pure acetonitrile as the eluent. Thus, the new column was successfully exploited for monitor and analysis of the hydrolysis of silane coupling agents. Furthermore, based on its oleophilicity, this report firstly utilized the CMPs@SiO material to identify and analyze the quality of cooking oils through one-step enrichment and subsequent HPLC separation. We will further exploit to fabricate versatile CMPs-based stationary phases, highlighting their potential applications in different separation scopes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2020.461539DOI Listing

Publication Analysis

Top Keywords

cmps@sio material
16
conjugated microporous
8
microporous polymers
8
hplc stationary
8
stationary phases
8
stationary phase
8
separation
6
material
6
cmps@sio
6
superhydrophobic conjugated
4

Similar Publications

Accuracy of Radiomics in the Identification of Extrathyroidal Extension and BRAF Mutations in Papillary Thyroid Carcinoma: A Systematic Review and Meta-analysis.

Acad Radiol

January 2025

Department of Radiology and Intervention, Hospital Pakar Kanak-Kanak (UKM Specialist Children's Hospital), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia (Y.L., F.Y.L., J.N.C., H.A.H., H.A.M.); Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), Department of Radiology, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia (H.A.M.). Electronic address:

Rationale And Objectives: Extrathyroidal extension (ETE) and BRAF mutation in papillary thyroid cancer (PTC) increase mortality and recurrence risk. Preoperative identification presents considerable challenges. Although radiomics has emerged as a potential tool for identifying ETE and BRAF mutation, systematic evidence supporting its effectiveness remains insufficient.

View Article and Find Full Text PDF

Rationale And Objectives: Training Convolutional Neural Networks (CNN) requires large datasets with labeled data, which can be very labor-intensive to prepare. Radiology reports contain a lot of potentially useful information for such tasks. However, they are often unstructured and cannot be directly used for training.

View Article and Find Full Text PDF

Novel MRI-based Hyper-Fused Radiomics for Predicting Pathologic Complete Response to Neoadjuvant Therapy in Breast Cancer.

Acad Radiol

January 2025

Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China (Q-X.C., L-Q.Z., X-Y.W., H-X.Z., J-J.L., M-C.X., H-Y.S., Z-X.K.). Electronic address:

Rationale And Objectives: To propose a novel MRI-based hyper-fused radiomic approach to predict pathologic complete response (pCR) to neoadjuvant therapy (NAT) in breast cancer (BC).

Materials And Methods: Pretreatment dynamic contrast-enhanced (DCE) MRI and ultra-multi-b-value (UMB) diffusion-weighted imaging (DWI) data were acquired in BC patients who received NAT followed by surgery at two centers. Hyper-fused radiomic features (RFs) and conventional RFs were extracted from DCE-MRI or UMB-DWI.

View Article and Find Full Text PDF

Microbial community analysis of supragingival plaque in patients with fixed prostheses.

J Prosthet Dent

January 2025

Associate Professor, Department of Stomatology, The Fifth Affiliated Hospital of Sun Yat-sen University, Xiangzhou, Zhuhai City, Guangdong, PR China. Electronic address:

Statement Of Problem: Harmony between prostheses and periodontal tissues is essential. The presence of a fixed prosthesis has been reported to increase the risk of periodontal lesion onset in abutment teeth and to affect longevity. However, studies comparing the supragingival plaque biofilm on fixed prostheses and natural teeth are lacking.

View Article and Find Full Text PDF

Introduction: Current trends of delaying childbearing and the increasing incidence of endometrial cancer in nulliparous woman necessitate research and development of fertility sparing treatments. Hormonal therapy with progestins offers an alternative to surgical treatment for a select group of patients of reproductive-age, who wish to preserve their reproductive potential.

Materials And Methods: The study evaluates the effectiveness of medroxyprogesterone acetate therapy in patients with early-stage endometrial cancer, atypical endometrial hyperplasia or atypical polypoid adenomyoma, seeking to preserve fertility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!